PHYSICAL PROPERTIS AND UNITS OF MEASUREMENT

1. If n-hexane boils at $68^{\circ} \mathrm{C}$, calculate the boiling temperature of the specified compound in Kelvin degrees ($\mathrm{K}=\mathrm{Kelvin}$).
1) 241 K ;
2) 341 K ;
3) 273 K ;
4) 205 K ;
5) 68 K .
2. How many cubic meters are $750 \mathrm{~mm}^{3}$?
1) $7,5 \cdot 10^{-9} \mathrm{~m}^{3}$;
2) $7,5 \cdot 10^{-6} \mathrm{~m}^{3}$;
3) $7,5 \cdot 10^{-5} \mathrm{~m}^{3}$;
4) $7,5 \cdot 10^{-7} \mathrm{~m}^{3}$;
5) $0,75 \mathrm{~m}^{3}$.
3. Find the derived SI unit.
1) Hertz (Hz);
2) Meter (m);
3) Second (s);
4) Ampere (A);
5) Candela (cd).
4. Hydrochloric acid (HCl) with the percentage concentration of 36.5% has a density of $1.18 \mathrm{~g} / \mathrm{cm}^{3}$. Express the density of the acid in the form of $\left(\mathrm{g} / \mathrm{dm}^{3}\right)$.
1) $1,18 \cdot 10^{-3} \mathrm{~g} / \mathrm{dm}^{3}$;
2) $1,18 \cdot 10^{3} \mathrm{~g} / \mathrm{dm}^{3}$;
3) $1,18 \cdot 10^{6} \mathrm{~g} / \mathrm{dm}^{3}$;
4) $1,18 \cdot 10^{2} \mathrm{~g} / \mathrm{dm}^{3}$;
5) $1,18 \cdot 10^{-6} \mathrm{~g} / \mathrm{dm}^{3}$.

MATTER. ATOM STRUCTURE

1. A saturated solution of sodium chloride in water contains 2.1 g of salt in the form of a precipitate. What is the most convenient way to quantitatively separate the precipitate from the previously mentioned mixture?
1) Filtration;
2) Decanting;
3) Sedimentation;
4) Extraction;
5) Mixing.
2. At the moment when the solvent vapor pressure above the solution is equalized with the external pressure during the solution heating, there occurs a phenomenon called:
1) evaporation;
2) deposition;
3) melting;
4) boiling;
5) sublimation.
3. Calculate the number of neutrons in the nucleus of sodium ions Na^{+}if we know that the atomic number of atom is 11 , and the mass number is 23 .
1) 10 ;
2) 11 ;
3) 23 ;
4) 12 ;
5) 13 .
4. On the basis of the electronic configurations of atoms of individual elements, draw a conclusion which atom has the highest value of ionization energy.
1) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$;
2) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2}$;
3) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5}$;
4) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{3}$;
5) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{4}$.
5. Find orbitals that are characterized by the major quantum number $n=3$ and the secondary quantum number $1=2$.
1) 3p-orbitals;
2) 3s- orbital;
3) 3d- orbitals;
4) 4f- orbitals;
5) 2 s - orbital.

CHEMICAL BOND

1. Durin the formation of a polar covalent bond between a hydrogen atom and a chlorine atom in a hydrogen chloride molecule, the following orbitals overlap: (${ }_{1} \mathrm{H}$ and ${ }_{17} \mathrm{Cl}$)
1) 1 s H and 3 p Cl ;
2) 1 s H and 3 s Cl ;
3) 1 s H and 2 s Cl ;
4) 1 s H and 2 p Cl ;
5) 2 s H and 3 p Cl .
2. Calculate the order of the bond in the O_{2} molecule if it is known that the order number of oxygen atom is $8\left({ }_{8} \mathrm{O}\right)$.
1) 1,5 ;
2) 3 ;
3) 2 ;
4) 2,5 ;
5) 1 .
3. Based on the value of electronegativity of individual elements, predict in which case the bond with the most expressed covalent character is formed. $\chi(\mathrm{Li})=1 ; \chi(\mathrm{Cl})=3 ; \chi(\mathrm{H})=2,1 ; \chi(\mathrm{Mg})=1,2 ; \chi(\mathrm{O})=3,5$; $\chi(\mathrm{F})=4 ; \chi(\mathrm{Na})=0,9 ; \chi(\mathrm{Br})=2,8$.
1) LiCl ;
2) HCl ;
3) MgO ;
4) HF ;
5) NaBr .
4. Which bond is cleaved by the dissociation of a complex compound $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Cl}$?
1) Coordinate-covalent bond;
2) Metal connection;
3) Ionic bond;
4) Covalent bond;
5) Hydrogen bond.
5. Find the TRUE statement:
6) Molecules with unpaired electrons in molecular orbitals are called diamagnetic molecules;
7) The carbon atoms in the ethane molecule are sp^{2}-hybridized;
8) The boron atom in the BCl_{3} molecule is sp^{3}-hybridized;
9) The formation of the π-bond is performed by overlapping one s-orbital and one sp-hybridized atomic orbital;
10) The metal of the crystal lattice can be: body-centered cubic (Li), surface-centered cubic (Cu) as well as a hexagonal (Zn).

BASIC CHEMICAL LAWS

1. Which of the above-mentiond examples is not possible to illustrate the law of multiple proportions.
1) Water and hydrogen peroxide;
2) Sulfur dioxide and sulfur trioxide;
3) Nitrogen(I)-oxide, nitrogen(II)-oxide, nitrogen(III)-oxide, nitrogen(IV)-oxide, nitrogen(V)-oxide;
4) Water and methane;
5) Carbon monoxide and carbon dioxide.
2. In which the weight ratio carbon and oxygen were combined in the molecule of the carbon(IV)-oxide? $\operatorname{Ar}(\mathrm{C})=12 ; \operatorname{Ar}(\mathrm{O})=16$.
1) $3: 8$;
2) $1: 2$;
3) $2: 1$;
4) $3: 4$;
5) $12: 16$.
3. What is the volume of 1 mole of oxygen at a temperature of $0^{\circ} \mathrm{C}$ and pressure of $101,325 \mathrm{kPa}$?
1) $32 \mathrm{~cm}^{3}$;
2) $22,4 \mathrm{dm}^{3}$;
3) $224 \mathrm{~cm}^{3}$;
4) 16 g ;
5) $22,4 \mathrm{~m}^{3}$.
4. Find the empirical formula of a compound consisting of: 58.82% of carbon, 9.80% of hydrogen and 31.37% of oxygen. $\operatorname{Ar}(\mathrm{C})=12 ; \operatorname{Ar}(\mathrm{H})=1 ; \operatorname{Ar}(\mathrm{O})=16$.
1) CHO ;
2) $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2}$;
3) $\mathrm{C}_{5} \mathrm{H}_{10}$;
4) $\mathrm{C}_{5} \mathrm{O}_{2}$;
5) $\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{O}_{5}$.
5. Calculate the percentage of sulfur in copper(II)-sulfate pentahydrate. $\operatorname{Ar}(\mathrm{Cu})=63,55 ; \operatorname{Ar}(\mathrm{S})=32$; $\operatorname{Ar}(\mathrm{O})=16 ; \operatorname{Ar}(\mathrm{H})=1$.
1) $12,82 \%$;
2) $87,18 \%$;
3) $20,06 \%$;
4) $79,94 \%$;
5) 32%.

CHEMICAL REACTIONS. CALCULATIONS BASED ON CHEMICAL EQUATIONS

1. What is the mass of 0.72 mol of sulfur(IV)-oxide $\left(\mathrm{SO}_{2}\right)$? $\operatorname{Ar}(\mathrm{S})=32 ; \operatorname{Ar}(\mathrm{O})=16$.
1) $46,08 \mathrm{~g}$;
2) $46,08 \mathrm{mg}$;
3) $46,08 \mathrm{~kg}$;
4) $34,56 \mathrm{~g}$;
5) 54 g .
2. $1,08 \cdot 10^{24}$ oxygen atoms are found in:

$$
(\operatorname{Ar}(\mathrm{H})=1 ; \operatorname{Ar}(\mathrm{O})=16 ; \operatorname{Ar}(\mathrm{S})=32 ; \operatorname{Ar}(\mathrm{Hg})=200 ; \operatorname{Ar}(\mathrm{C})=12 ; \operatorname{Ar}(\mathrm{N})=14 .)
$$

1) $11,2 \mathrm{dm}^{3}$ gas CO_{2};
2) $0,15 \mathrm{mols} \mathrm{HNO}_{3}$;
3) $3,6 \cdot 10^{23}$ molecule of $\mathrm{H}_{2} \mathrm{O}$;
4) $44,1 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$;
5) 10 g HgO .
3. Calculate the mass (g) of carbonic acid containing the same number of molecules as $1.8 \cdot 10-3 \mathrm{dm}^{3}$ of water at room temperature. $\operatorname{Ar}(\mathrm{H})=1 ; \operatorname{Ar}(\mathrm{C})=12 ; \operatorname{Ar}(\mathrm{O})=16$.
1) 0,0498 ;
2) 1,8 ;
3) 0,62 ;
4) 0,018 ;
5) 6,2 .
4. How many oxygen atoms are in 31.5 g of nitric acid? $\operatorname{Ar}(\mathrm{H})=1 ; \operatorname{Ar}(\mathrm{N})=14 ; \operatorname{Ar}(\mathrm{O})=16$.
1) $9 \cdot 10^{23}$;
2) $6 \cdot 10^{23}$;
3) $9 \cdot 10^{-23}$;
4) $3 \cdot 10^{23}$;
5) $6 \cdot 10^{-23}$.
5. What is the volume $\left(\mathrm{dm}^{3}\right)$ of $3,6 \cdot 10^{23}$ molecules of carbon(IV)-oxide? (Measurements were performed under the normal conditions).
1) 1344 ,
2) 1,344 ;
3) 22,4 ;
4) 13,44 ;
5) 134,4 .

ENERGY CHANGES IN CHEMICAL REACTIONS (THERMOCHEMISTRY)

1. The thermal content of substances is called enthalpy, and is denoted by:
1) G ;
2) S;
3) A;
4) H ;
5) T .
2. How much energy is released during the reaction of 5.4 g of aluminum?
$\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+2 \mathrm{Al}(\mathrm{s}) \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+2 \mathrm{Fe}(\mathrm{s}) \Delta_{\mathrm{r}} \mathrm{H}=-847,8 \mathrm{~kJ} / \mathrm{mol}$
$\operatorname{Ar}(\mathrm{Al})=27 ; \operatorname{Ar}(\mathrm{Fe})=56 ; \operatorname{Ar}(\mathrm{O})=16$.
1) - $84,78 \mathrm{~kJ}$;
2) $84,78 \mathrm{~kJ}$;
3) $-169,59 \mathrm{~kJ}$;
4) $169,59 \mathrm{~kJ}$;
5) - $8,478 \mathrm{~kJ}$.
3. In which case, the system is in equilibrium?
1) $\Delta G<0$;
2) $\Delta S<0$;
3) $\Delta \mathrm{H}=0$;
4) $\Delta G=0$;
5) $\Delta \mathrm{S}<\Delta \mathrm{H} / \mathrm{T}$.
4. In which case, the entropy of the system decreases, ie. $\Delta \mathrm{S}<0$?
1) Evaporation of liquids;
2) Iodine sublimation;
3) Ice Melting;
4) Combining of mercury and oxygen with formation of mercury(II)-oxide;
5) Thermal decomposition of potassium chlorate.
5. Calculate the standard enthalpy of ethanol formation based on the following data and the stated chemical reaction:
$\Delta_{\mathrm{f}} \mathrm{H}\left(\mathrm{CO}_{2}\right)=-393,5 \mathrm{~kJ} / \mathrm{mol} ; \Delta_{\mathrm{f}} \mathrm{H}\left(\mathrm{H}_{2} \mathrm{O}\right)=-285,8 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Delta_{\mathrm{r}} \mathrm{H}=-1366,8 \mathrm{~kJ} / \mathrm{mol}$
1) $277,6 \mathrm{~kJ} / \mathrm{mol}$;
2) $-277,6 \mathrm{~kJ} / \mathrm{mol}$;
3) $393,5 \mathrm{~kJ} / \mathrm{mol}$;
4) $285,8 \mathrm{~kJ} / \mathrm{mol}$;
5) $1316,8 \mathrm{~kJ} / \mathrm{mol}$.

CHEMICAL REACTION RATE. EQUILIBRIUM

1. Find the correctly written expression for the rate of a chemical reaction based on the law of mass action for the next chemical reaction $2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$.
1) $\mathrm{v}=\mathrm{k} \cdot[\mathrm{NO}] \cdot\left[\mathrm{O}_{2}\right]$;
2) $\mathrm{v}=\mathrm{k} \cdot\left[\mathrm{NO}_{2}\right]$;
3) $\mathrm{v}=\mathrm{k} \cdot\left[\mathrm{NO}_{2}\right]^{2}$;
4) $\mathrm{v}=\mathrm{k} \cdot[\mathrm{NO}]^{2} \cdot\left[\mathrm{O}_{2}\right]^{2}$;
5) $\mathrm{v}=\mathrm{k} \cdot[\mathrm{NO}]^{2} \cdot\left[\mathrm{O}_{2}\right]$.
2. How will the value of the rate of direct chemical reaction change if the concentration of reactants increases three times?
$2 \mathrm{NOCl}(\mathrm{g}) \rightleftarrows 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$
1) the rate will not change;
2) the rate is increased three times;
3) the rate is reduced three times;
4) the rate is increased nine times;
5) the rate is reduced nine times.
3. Hydrogen peroxide decomposes spontaneously into water and oxygen in the presence of manganesedioxide. Manganese-dioxide for this chemical reaction is:
1) reactant;
2) reaction product;
3) activated complex;
4) catalyst;
5) inhibitor.
4. How does the reaction rate $\mathrm{A}(\mathrm{aq})+3 \mathrm{~B}(\mathrm{aq}) \rightarrow 2 \mathrm{C}(\mathrm{aq})$ change if the concentration of reactant A increases twice and the concentration of reactant B decreases twice?
1) The reaction rate is increased four times;
2) The reaction rate will not change;
3) The reaction rate is reduced four times;
4) The reaction rate is doubled;
5) The reaction rate is reduced twice.
5. How will the position of equilibrium of the system $2 \mathrm{HI}(\mathrm{g}) \rightleftarrows \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$ be affected by the increasement of pressure?
1) The equilibrium shifts to the right;
2) The equilibrium shifts to the left;
3) The specified change will not affect the equilibrium position;
4) The equilibrium shifts in the direction of the decomposition of hydrogen iodide;
5) The equilibrium shifts in the direction of hydrogen iodide formation.
6. Calculate the equilibrium constant of the following reaction: $\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftarrows \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$ if the equilibrium concentration for CO is $0,1 \mathrm{~mol} / \mathrm{dm}^{3}$, for $\mathrm{H}_{2} 0,3 \mathrm{~mol} / \mathrm{dm}^{3}$ and for $\mathrm{CH}_{3} \mathrm{OH}$ is $0,45 \mathrm{~mol} / \mathrm{dm}^{3}$.
1) 5 ;
2) 0,5 ;
3) 15 ;
4) 1,5 ;
5) 50 .

OXIDO-REDUCTION REACTIONS

1. Find the accurate statement:
1) Hydrogen in its compounds always has the oxidation state of +1 ;
2) Alkali metals can also have negative oxidation states;
3) Fluorine most often occurs in its compounds with the oxidation state -1 , but it also occurs often with positive oxidation states;
4) The algebraic sum of the oxidation numbers of the elements in the molecule is zero;
5) The algebraic sum of the oxidation numbers of the elements in a complex ion is equal to zero.
2. Determine the coefficients of the following chemical reaction:
$\mathrm{HNO}_{3}+\mathrm{Ag}_{2} \mathrm{~S} \rightarrow \mathrm{AgNO}_{3}+\mathrm{NO}_{2}+\mathrm{S}+\mathrm{H}_{2} \mathrm{O}$
1) $\mathrm{HNO}_{3}+\mathrm{Ag}_{2} \mathrm{~S} \rightarrow 2 \mathrm{AgNO}_{3}+\mathrm{NO}_{2}+\mathrm{S}+\mathrm{H}_{2} \mathrm{O}$;
2) $2 \mathrm{HNO}_{3}+\mathrm{Ag}_{2} \mathrm{~S} \rightarrow \mathrm{AgNO}_{3}+\mathrm{NO}_{2}+\mathrm{S}+\mathrm{H}_{2} \mathrm{O}$;
3) $\mathrm{HNO}_{3}+\mathrm{Ag}_{2} \mathrm{~S} \rightarrow 2 \mathrm{AgNO}_{3}+2 \mathrm{NO}_{2}+\mathrm{S}+\mathrm{H}_{2} \mathrm{O}$;
4) $4 \mathrm{HNO}_{3}+\mathrm{Ag}_{2} \mathrm{~S} \rightarrow \mathrm{AgNO}_{3}+2 \mathrm{NO}_{2}+\mathrm{S}+\mathrm{H}_{2} \mathrm{O}$;
5) $4 \mathrm{HNO}_{3}+\mathrm{Ag}_{2} \mathrm{~S} \rightarrow 2 \mathrm{AgNO}_{3}+2 \mathrm{NO}_{2}+\mathrm{S}+2 \mathrm{H}_{2} \mathrm{O}$.
3. Which compound acts as a reducing agent only?
1) HNO_{2};
2) $\mathrm{H}_{2} \mathrm{SO}_{3}$;
3) $\mathrm{H}_{2} \mathrm{~S}$;
4) SO_{3};
5) MnO_{2}.
4. Find the reaction in which the oxidation of chlorine occurred.
1) $\mathrm{SnCl}_{2}+\mathrm{Cl}_{2} \rightarrow \mathrm{SnCl}_{4}$;
2) $\mathrm{NaCl}+\mathrm{AgNO}_{3} \rightarrow \mathrm{AgCl}+\mathrm{NaNO}_{3} ;$
3) $\mathrm{MnO}_{2}+4 \mathrm{HCl} \rightarrow \mathrm{Cl}_{2}+\mathrm{MnCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$;
4) $\mathrm{HClO} \rightarrow \mathrm{HCl}+\mathrm{O}$;
5) $\mathrm{KIO}_{3}+5 \mathrm{KI}+6 \mathrm{HCl} \rightarrow 6 \mathrm{KCl}+3 \mathrm{I}_{2}+3 \mathrm{H}_{2} \mathrm{O}$.
5. How many grams of (g) ammonium-dichromate are needed in order to obtain 30 mmol of chromium (III) oxide by the reaction of decomposition? $\operatorname{Ar}(\mathrm{N})=14 ; \operatorname{Ar}(\mathrm{H})=1 ; \operatorname{Ar}(\mathrm{Cr})=52 ; \operatorname{Ar}(\mathrm{O})=16$.
1) 4,56 ;
2) 7,56 ;
3) 45,6 ;
4) 75,6 ;
5) 456 .
6. How many moles (mol) of the oxidizing agent are needed to obtain $1,2 \cdot 10^{20}$ chlorine atoms in the reaction of potassium-permanganate and hydrochloric acid?
1) $4 \cdot 10^{3}$;
2) $0,4 \cdot 10^{-2}$;
3) $4 \cdot 10^{-5}$;
4) 10^{-3};
5) 10^{-4}.

ION (IONIC) REACTIONS

1. Show the reaction of aluminum-chloride and sodium-hydroxide in the ionic form.
1) $\mathrm{AlCl}_{3}+3 \mathrm{NaOH} \rightarrow \mathrm{Al}(\mathrm{OH})_{3}+3 \mathrm{NaCl}$;
2) $\mathrm{Al}^{3+}+3 \mathrm{Cl}^{-}+3 \mathrm{Na}^{+}+3 \mathrm{OH}^{-} \rightarrow \mathrm{Al}(\mathrm{OH})_{3}+3 \mathrm{Na}^{+}+3 \mathrm{Cl}^{-}$;
3) $\mathrm{Al}^{3+}+3 \mathrm{Cl}^{-}+\mathrm{Na}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{Al}^{3+}+3 \mathrm{OH}^{-}+\mathrm{Na}^{+}+3 \mathrm{Cl}^{-}$;
4) $\mathrm{AlCl}_{3}+\mathrm{Na}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{Al}(\mathrm{OH})_{3}+\mathrm{Na}^{+}+\mathrm{Cl}^{-}$;
5) $\mathrm{Al}^{3+}+3 \mathrm{Cl}^{-}+3 \mathrm{NaOH} \rightarrow \mathrm{Al}(\mathrm{OH})_{3}+3 \mathrm{Na}^{+}+3 \mathrm{Cl}^{-}$.
2. Find the compound that should be written in the form of molecule in ionic reactions.
1) HBr ;
2) LiOH ;
3) $\mathrm{NH}_{4} \mathrm{Cl}$;
4) AgCl ;
5) NaNO_{3}.
3. Find a series which includes only those compounds that are shown in ionic reactions in the form of ions?
1) $\mathrm{CO}, \mathrm{H}_{2} \mathrm{O}, \mathrm{Mg}(\mathrm{OH})_{2}, \mathrm{HCl}$;
2) $\mathrm{CH}_{4}, \mathrm{HBr}, \mathrm{NaOH}, \mathrm{AgCl}$;
3) $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{KOH}, \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}, \mathrm{NaCl}$;
4) $\mathrm{HNO}_{3}, \mathrm{BaSO}_{4}, \mathrm{Ca}(\mathrm{OH})_{2}, \mathrm{KNO}_{3}$;
5) $\mathrm{HClO}_{4}, \mathrm{Al}(\mathrm{OH})_{3}, \mathrm{KCl}, \mathrm{LiOH}$.
4. The reaction of barium-chloride and sulfuric acid produces the compound with low solubility:
1) Hydrochloric acid;
2) Barium-sulphate;
3) Barium-chloride;
4) 4) Barium-sulphite;
1) Sulfuric acid.
5. Find the incorrect statement.
1) Substitution is a chemical reaction of replacing atoms or groups of atoms in the molecules of reactants with other atoms or atomic groups;
2) Reactions of analysis are reactions of combining two or more simple substances into a new, more complex substance;
3) The reaction $\mathrm{BaSO}_{4}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{BaCO}_{3}+\mathrm{Na}_{2} \mathrm{SO}_{4}$ represents the exchange reaction;
4) In ionic reactions, silver-chloride is a low soluble compound and is written in the form of molecule;
5) 5) The reaction $8 \mathrm{Fe}+\mathrm{S} 8 \rightarrow 8 \mathrm{FeS}$ represents the reaction of synthesis.

SOLUTIONS

1. The process opposite to the dissolution process is called:
1) solvation;
2) hydration;
3) distillation;
4) filtration;
5) crystallization.
2. The solubility of potassium-chloride is 37.2 g at $30^{\circ} \mathrm{C}$. How many grams (g) of potassium-chloride are in 55.33 g of a saturated solution of this salt?
1) 137,32 ;
2) 18,13 ;
3) 15,00 ;
4) 20,58 ;
5) 92,53 .
3. What is the molar concentration of the solution of sulfuric acid with a percentage concentration of 96% if the density of that solution is $1,84 \mathrm{~g} / \mathrm{cm}^{3} . \operatorname{Ar}(\mathrm{H})=1 ; \operatorname{Ar}(\mathrm{S})=32 ; \operatorname{Ar}(\mathrm{O})=16$.
1) 52,17 ;
2) 0,98 ;
3) 4 ;
4) 244,90 ;
5) 0,02 .
4. What is the molar concentration $\left(\mathrm{mol} / \mathrm{dm}^{3}\right)$ of the solution formed by mixing of 150 mL of $1 \cdot 10^{-3}$ $\mathrm{mol} / \mathrm{dm}^{3}$ sodium hydroxide solution and 350 mL of $0.05 \mathrm{~mol} / \mathrm{dm}^{3}$ sodium hydroxide solution.
1) $1,5 \cdot 10^{-4}$;
2) $1,75 \cdot 10^{-2}$;
3) $1,75 \cdot 10^{-3}$;
4) $3,53 \cdot 10^{-2}$;
5) $3,53 \cdot 10^{-4}$.
5. Calculate the mass concentration $\left(\mathrm{g} / \mathrm{dm}^{3}\right)$ of the nitric acid water solution whose quantitative concentration is $0.15 \mathrm{~mol} / \mathrm{dm}^{3} . \operatorname{Ar}(\mathrm{H})=1 ; \operatorname{Ar}(\mathrm{N})=14 ; \operatorname{Ar}(\mathrm{O})=16$.
1) 9,45 ;
2) 94,5 ;
3) 0,945 ;
4) 1,5 ;
5) 15 .
6. How many grams (g) of calcium-phosphate are needed to prepare 180 mL of the solution with a concentration of $0.08 \mathrm{~mol} / \mathrm{dm}^{3} ? \operatorname{Ar}(\mathrm{Ca})=40 ; \operatorname{Ar}(\mathrm{P})=31 ; \operatorname{Ar}(\mathrm{O})=16$.
1) 0,0144 ;
2) 1,44 ;
3) 0,08 ;
4) 4,464 ;
5) 8 .
7. Calculate the molarity of the aqueous sodium-chloride solution containing 0.004 moles of dissolved substance in 20 mL of the solution. $\operatorname{Ar}(\mathrm{Na})=23 ; \operatorname{Ar}(\mathrm{Cl})=35,5$.
1) 4 ;
2) 0,2 ;
3) 0,4 ;
4) 2 ;
5) 0,04 .
8. The percentage concentration of the solution formed by dissolving 5.6 g of calcium-oxide in 40.65 mL of water is: $\operatorname{Ar}(\mathrm{Ca})=40 ; \operatorname{Ar}(\mathrm{H})=1 ; \operatorname{Ar}(\mathrm{O})=16$
1) $13,78 \% \mathrm{CaO}$;
2) $18,20 \% \mathrm{Ca}(\mathrm{OH})_{2}$;
3) $12,11 \% \mathrm{CaO}$;
4) $16 \% \mathrm{Ca}(\mathrm{OH})_{2}$;
5) $7,4 \% \mathrm{Ca}(\mathrm{OH})_{2}$.
9. Calculate the molar concentration $(\mathrm{mol} / \mathrm{kg})$ of the hydrochloric acid solution at the concentration of $11.70 \mathrm{~mol} / \mathrm{dm}^{3}$ if the density of the solution is $1.18 \mathrm{~g} / \mathrm{mL} . \operatorname{Ar}(\mathrm{H})=1 ; \operatorname{Ar}(\mathrm{Cl})=35,5$.
1) 15,54 ;
2) 36,2 ;
3) 0,365 ;
4) 0,15 ;
5) 1,55 .
10. The ratio of the amount of dissolved substance and the volume of the solution is:
1) molal concentration;
2) percentage concentration;
3) molar concentration;
4) mass concentration;
5) molar (mole) fraction.

COLLOIDAL SOLUTIONS

1. The particle size of the dispersed phase in colloid dispersed systems is in the range from:
1) Less than 1 nm ;
2) From 1 to 10 nm ;
3) From 1 to 100 nm ;
4) Larger than 100 nm ;
5) 2 nm .
2. Coagulation of colloidal solutions is:
1) diluting the solution;
2) dissolution process;
3) decanting process;
4) the process of precipitation of colloidal solutions;
5) adsorption process
3. Which of the following solutions are not the real solutions?
1) Sugar in water;
2) Solution of sodium-chloride in water;
3) Milk;
4) Diluted solution of hydrochloric acid;
5) Aqueous solution of potassium nitrate.
4. By adding a larger amount of water, the gel can pass into:
1) the real solution;
2) hydrophobic colloidal solution;
3) crystal;
4) salt;
5) there are no changes on that occasion.
5. What is the name of the process that occurs when a large amount of water is added to coagulated silverchloride?
1) Faraday-Tyndall effect;
2) Coagulation;
3) Sublimation;
4) Extraction;
5) Peptization.

COLLIGATIVE PROPERTIES OF THE SOLUTION

1. Colligative properties of the solution largely depend on:
1) solvent polarity;
2) molecular weights of the dissolved substance;
3) solution mass;
4) molecular weights of the solvent;
5) the number of particles of the dissolved substance.
2. The aqueous solution of which of the listed compounds (the same concentrations) will show the lowest freezing temperature?
1) Sodium-chloride;
2) Urea;
3) Aluminum-sulfate;
4) Potassium-sulfate;
5) Lithium-nitrate.
3. At what temperature does the solution obtained by dissolving 0.06 g of urea in 200 g of water freeze? The cryoscopic constant (molal depression constant) for water is $\mathrm{K}_{\mathrm{k}}=1,86 . \operatorname{Ar}(\mathrm{C})=12 ; \operatorname{Ar}(\mathrm{N})=14$; $\operatorname{Ar}(\mathrm{H})=1 ; \operatorname{Ar}(\mathrm{O})=16$.
1) $-9,3^{\circ} \mathrm{C}$;
2) $9,3^{\circ} \mathrm{C}$;
3) $0,093^{\circ} \mathrm{C}$;
4) $0,0093^{\circ} \mathrm{C}$;
5) $-0,0093^{\circ} \mathrm{C}$.
4. How many grams (g) of urea should be dissolved in 250 mL of solution for the osmotic pressure of 0.15 atm at $25^{\circ} \mathrm{C} ? \operatorname{Ar}(\mathrm{C})=12 ; \operatorname{Ar}(\mathrm{O})=16 ; \operatorname{Ar}(\mathrm{H})=1 .(1 \mathrm{~atm}=101325 \mathrm{~Pa})$
1) $6,13 \cdot 10^{-3}$;
2) $1,38 \cdot 10^{-3}$;
3) 82,81 ;
4) 0,00153 ;
5) $9,2 \cdot 10^{-2}$.
5. At what temperature does the solution containing $1,32 \mathrm{~g}$ of calcium-nitrite in 250 g of water boil? The ebullioscopic constant (molal elevation constant) is $\mathrm{K}_{\mathrm{e}}=0,52 . \operatorname{Ar}(\mathrm{Ca})=40 ; \operatorname{Ar}(\mathrm{N})=14 ; \operatorname{Ar}(\mathrm{O})=16$.
1) 0,0624 ;
2) 99,9376 ;
3) 100,0624 ;
4) 0,04 ;
5) $-0,0624$.

ACIDS AND BASES. DISSOCIATION RATES. DISSOCIATION CONSTANT

1. Find the false statement.
1) According to the protolytic theory, acids are proton-releasing substances;
2) For hydrochloric acid, the conjugate base is the chloride anion;
3) For the ammonium ion, the conjugate base is the hydrogen ion H^{+};
4) According to the protolytic theory, it can be concluded that the bases are nucleophilic substances;
5) According to the protolytic theory, the term acid or base does not mean the appropriate class of inorganic compounds, but the properties of molecules in a given environment.
2. Ion $\mathrm{NO}_{3}{ }^{-}$represents the conjugate base for:
1) HNO_{2};
2) NO ;
3) NH_{3};
4) $\mathrm{NH}_{2} \mathrm{OH}$;
5) HNO_{3}.
3. In the above-mentioned reactions, there will react as a base::
$\mathrm{NH}_{4}{ }^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow$
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightarrow$
1) In the first reaction $\mathrm{NH}_{4}{ }^{+}$, and in the second $\mathrm{CH}_{3} \mathrm{COOH}$;
2) In the first reaction $\mathrm{NH}_{4}{ }^{+}$, and in the second $\mathrm{H}_{2} \mathrm{O}$;
3) In the first reaction $\mathrm{H}_{2} \mathrm{O}$, and in the second $\mathrm{CH}_{3} \mathrm{COOH}$;
4) In both $\mathrm{H}_{2} \mathrm{O}$;
5) In the first $\mathrm{H}_{2} \mathrm{O}$, while in the other among the reactants there is no molecule that acts as a base.
4. Calculate the constant of the conjugate acid if $\mathrm{pK}_{\mathrm{b}}\left(\mathrm{NH}_{3}\right)=4,8$.
1) $1,58 \cdot 10^{-4}$;
2) $1,58 \cdot 10^{-5}$;
3) $1,58 \cdot 10^{5}$;
4) $6,31 \cdot 10^{-10}$;
5) $6,31 \cdot 10^{10}$.
5. Calculate the degree of dissociation if it is known that in the system of a total of 500 molecules only 5 molecules have been dissociated (express in percent (\%)).
1) 0,01 ;
2) 1 ;
3) 5 ;
4) 50 ;
5) 49,5 .
6. Find the conjugate bases for the listed molecules and ions: $\mathrm{HCN}, \mathrm{NH}_{4}^{+}, \mathrm{HSO}_{4}^{-}, \mathrm{H}_{2} \mathrm{CO}_{3}$.
1) $\mathrm{CN}^{-}, \mathrm{NH}_{4}{ }^{+}, \mathrm{SO}_{4}{ }^{2-}, \mathrm{HCO}_{3}{ }^{-}$;
2) $\mathrm{CN}, \mathrm{NH}_{3}, \mathrm{SO}_{4}{ }^{2-}, \mathrm{HCO}_{3}{ }^{-}$;
3) $\mathrm{CN}^{-}, \mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HCO}_{3}^{-}$;
4) $\mathrm{HCN}, \mathrm{NH}_{3}, \mathrm{SO}_{4}{ }^{2-}, \mathrm{HCO}_{3}{ }^{-}$;
5) $\mathrm{CN}^{-}, \mathrm{NH}_{3}, \mathrm{SO}_{4}{ }^{2-}, \mathrm{H}_{2} \mathrm{CO}_{3}$.

pH and pOH VALUE

1. Calculate the pH value of the solution if the concentration of OH^{-}ions is $10^{-8} \mathrm{~mol} / \mathrm{dm}^{3}$.
1) 8 ;
2) 18 ;
3) 2 ;
4) 6 ;
5) 10 .
2. What are the concentrations of $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}ions if the pOH value of the solution is 9 .
1) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=9 \mathrm{~mol} / \mathrm{dm}^{3}$ и $\left[\mathrm{OH}^{-}\right]=5 \mathrm{~mol} / \mathrm{dm}^{3}$;
2) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=5 \mathrm{~mol} / \mathrm{dm}^{3}$ и $\left[\mathrm{OH}^{-}\right]=9 \mathrm{~mol} / \mathrm{dm}^{3}$;
3) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-5} \mathrm{~mol} / \mathrm{dm}^{3}$ и $\left[\mathrm{OH}^{-}\right]=10^{-9} \mathrm{~mol} / \mathrm{dm}^{3}$;
4) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-9} \mathrm{~mol} / \mathrm{dm}^{3}$ и $\left[\mathrm{OH}^{-}\right]=10^{-5} \mathrm{~mol} / \mathrm{dm}^{3}$;
5) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]=10^{-9} \mathrm{~mol} / \mathrm{dm}^{3}$.
3. How many milliliters (mL) of $0.05 \mathrm{~mol} / \mathrm{dm}^{3}$ sodium-hydroxide solution are needed to neutralize 500 mL of perchloric acid solution with pH value 2 ?
1) 10^{-2};
2) $5 \cdot 10^{-3}$;
3) $5 \cdot 10^{3}$;
4) $5 \cdot 10^{-2}$;
5) 10^{2}.
4. Which solution is the most acidic one?
1) $\mathrm{pH}=2$;
2) $\left[\mathrm{H}^{+}\right]=10^{-4} \mathrm{~mol} / \mathrm{dm}^{3}$;
3) $\mathrm{pH}=0$;
4) $\mathrm{pOH}=13$;
5) $\left[\mathrm{OH}^{-}\right]=10^{-4} \mathrm{~mol} / \mathrm{dm}^{3}$.
5. What is the concentration of hydrocyanic acid $\left(\mathrm{mol} / \mathrm{dm}^{3}\right)$ if the pH value of the solution is 5.05 , and acid dissociation constant $4 \cdot 10^{-10}$.
1) $8,9 \cdot 10^{-6}$;
2) $1,12 \cdot 10^{-9}$;
3) 0,2 ;
4) $4 \cdot 10^{-10}$,
5) 2,5 .
6. What is the pOH value of the solution containing 1.48 g of calcium-hydroxide in 400 mL of the solution. $\operatorname{Ar}(\mathrm{Ca})=40 ; \operatorname{Ar}(\mathrm{O})=16 ; \operatorname{Ar}(\mathrm{H})=1$.
1) 13 ;
2) 1,30 ;
3) 12,70 ;
4) 1 ;
5) 1,70 .
7. Calculate the pH value of the solution containing $1,5 \cdot 10^{20} \mathrm{OH}^{-}$ions in 250 mL of the solution.
1) 3,61 ;
2) 3 ;
3) 5 ;
4) 11 ;
5) 10^{-3}.

BUFFERS

1. Which mixture represents a buffer?
1) HNO_{3} and NaNO_{2};
2) KOH and $\mathrm{NH}_{4} \mathrm{Cl}$;
3) $\mathrm{CH}_{3} \mathrm{COOH}$ and NaCl ;
4) HNO_{2} and KNO_{2};
5) NH_{3} and CaSO_{4}.
2. If ammonia $\left(\mathrm{NH}_{3}\right)$ molecules are found in the mixture with one of the above-mentioned compounds, then the resulting mixture will have buffering properties.
1) NaOH ;
2) NH_{3};
3) $\mathrm{NH}_{4} \mathrm{Cl}$;
4) $\mathrm{Ca}(\mathrm{OH})_{2}$;
5) CO .
3. Which buffer is not biologically significant?
1) Bicarbonate;
2) Hemoglobin;
3) Phosphate;
4) Ammonia;
5) Protein.
4. If a small amount of sodium-hydroxide is added to the aqueous solution consisting of ammonia and ammonium-chloride, then one of the listed component of the buffer system will react with the added OH^{-}ions:
1) base;
2) ammonia;
3) ammonium-hloride;
4) sodium-hydroxide;
5) components from the solution do not react.
5. How many milligrams (mg) of sodium-acetate should be added into 200 mL of the solution of acetic acid with a concentration of $0.02 \mathrm{~mol} / \mathrm{L}$ so that the concentration of H^{+}ions of such solution is $9 \cdot 10^{-5}$ $\mathrm{mol} / \mathrm{L}$? The acid dissociation constant is $1,8 \cdot 10^{-5} . \operatorname{Ar}(\mathrm{C})=12 ; \operatorname{Ar}(\mathrm{H})=1 ; \operatorname{Ar}(\mathrm{O})=16 ; \operatorname{Ar}(\mathrm{Na})=23$.
1) 328 ;
2) 656 ;
3) 0,432 ;
4) 6,56;
5) 65,6 .
6. What is the pH of the solution formed when 107 mg of ammonium-chloride is added to 100 mL of 0.05 $\mathrm{mol} / \mathrm{L}$ ammonia solution. $\mathrm{K}_{\mathrm{b}}=1,8 \cdot 10^{-5} ; \operatorname{Ar}(\mathrm{H})=1 ; \operatorname{Ar}(\mathrm{N})=14 ; \operatorname{Ar}(\mathrm{O})=16$.
1) 4,35 ;
2) 7 ;
3) 9,65 ;
4) 4,75 ;
5) 10 .
7. If we have 50 mL of ammonium-hydroxide solution with the concentration of $0.2 \mathrm{~mol} / \mathrm{L}$, how many milliliters (mL) of $0.1 \mathrm{~mol} / \mathrm{L}$ hydrochloric acid need to be added to make a buffer solution?
1) 100 mL ;
2) 50 mL ;
3) 101 mL ;
4) 110 mL ;
5) 190 mL .
8. What is the concentration of H^{+}ions in the solution in which the concentrations of ammonia and ammonium-chloride are equal and are $0,15 \mathrm{~mol} / \mathrm{dm}^{3}$. The dissociation constant of ammonia is $1,8 \cdot 10^{-5}$.
1) $1,8 \cdot 10^{5} \mathrm{~mol} / \mathrm{dm}^{3}$;
2) $5,56 \cdot 10^{10} \mathrm{~mol} / \mathrm{dm}^{3}$;
3) $1,8 \cdot 10^{-5} \mathrm{~mol} / \mathrm{dm}^{3}$;
4) $0,15 \mathrm{~mol} / \mathrm{dm}^{3}$;
5) $5,56 \cdot 10^{-10} \mathrm{~mol} / \mathrm{dm}^{3}$.
9. Which compound in the mixture with sodium-formate is the buffer system?
1) Sulfuric acid;
2) Sodium-hydroxide;
3) Methane acid;
4) Perchloric acid;
5) Potassium-hydroxide.

SALT. SALT HYDROLYSIS

1. Which compound does not hydrolyze?
1) CaCl_{2};
2) $\mathrm{NH}_{4} \mathrm{Cl}$;
3) KNO_{2};
4) $\mathrm{Al}\left(\mathrm{ClO}_{4}\right)_{3}$;
5) KClO .
2. Which compound hydrolyzes alkally (produces solutions that are basic)?
1) NaOH ;
2) CaSO_{4};
3) NaNO_{2};
4) $\mathrm{NH}_{2} \mathrm{OH}$;
5) HCl .
3. The aqueous solution of one of the listed compounds has the pH value greater than 7.
1) KNO_{2};
2) MnSO_{4};
3) $\mathrm{H}_{2} \mathrm{SO}_{3}$;
4) BeSO_{4};
5) HClO_{4}.
4. In the reaction of sodium-hydroxide and one of the listed compounds, a new compound is formed which does not undergo the hydrolysis reaction.
1) Nitric acid;
2) Acetic acid;
3) Sulfuric acid;
4) Perchloric acid;
5) Chloric acid.
5. The color of litmus paper is blue in the aqueous solution of one of the listed compounds.
1) FeCl_{3};
2) KCN ;
3) NaNO_{3};
4) NaCl ;
5) HClO_{2}.
6. How many milligrams (mg) of the basic (alkali) salt are formed in the reaction of 0.148 g of calciumhydroxide with the appropriate amount of hydrochloric acid? $\operatorname{Ar}(\mathrm{Ca})=40 ; \operatorname{Ar}(\mathrm{O})=16 ; \operatorname{Ar}(\mathrm{H})=1$; $\mathrm{Ar}(\mathrm{Cl})=35,5$.
1) 185 ;
2) 2 ;
3) 0,002 ;
4) 18,5 ;
5) 0,185 .
7. Find the neutral salt listed below that hydrolyzes acidically.
1) NaCl ;
2) KNO_{2};
3) KHCO_{3};
4) $\mathrm{Fe}\left(\mathrm{ClO}_{4}\right)_{2}$;
5) FeOHSO_{4}.
8. If a chemical equation $\mathrm{NH}_{4}{ }^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}$is read from the right to the left, then it represents a process that is the opposite of the hydrolysis process, and it is called:
1) distillation;
2) sublimation;
3) extraction;
4) peptization;
5) neutralization.

ELECTROLYSIS.

1. The electrolysis of molten zinc-iodide at the cathode separates:
1) Zn ;
2) H_{2};
3) $\mathrm{H}_{2} \mathrm{O}$;
4) I_{2};
5) O_{2}.
2. The electrolysis of molten iron(III)-chloride at the anode separates:
1) Fe ;
2) H_{2};
3) Cl_{2};
4) O_{2};
5) $\mathrm{H}_{2} \mathrm{O}$.
3. During the electrolysis of molten sodium-chloride, the following process will occur at the cathode:
1) reduction of sodium ions;
2) oxidation of chlorine ions;
3) reduction of chlorine ions;
4) oxidation of oxygen;
5) oxidation of sodium ions.
4. Which mass (g) of molten sodium-hydroxide undergoes the electrolysis if 0.69 g of sodium is isolated at the cathode during that process? $\operatorname{Ar}(\mathrm{Na})=23 ; \operatorname{Ar}(\mathrm{O})=16 ; \operatorname{Ar}(\mathrm{H})=1$.
1) 0,69 ;
2) 69 ;
3) 40 ;
4) 1,2 ;
5) 12 .
5. Find the equation that is not written correctly.
1) $\mathrm{Fe}+\mathrm{CuSO}_{4} \rightarrow \mathrm{FeSO}_{4}+\mathrm{Cu}$;
2) $\mathrm{Zn}+\mathrm{CuSO}_{4} \rightarrow \mathrm{ZnSO}_{4}+\mathrm{Cu}$;
3) $\mathrm{Fe}+\mathrm{CaSO}_{4} \rightarrow \mathrm{FeSO}_{4}+\mathrm{Ca}$;
4) $2 \mathrm{Na}+2 \mathrm{H}_{3} \mathrm{O}^{+} \rightarrow 2 \mathrm{Na}^{+}+\mathrm{H}_{2}+2 \mathrm{H}_{2} \mathrm{O}$;
5) $\mathrm{Zn}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{ZnSO}_{4}+\mathrm{H}_{2}$.
6. Which metal can reduce H^{+}-ion from the acid, ie. can release a molecule of hydrogen from the acid?
1) Cu ;
2) Zn ;
3) Ag ;
4) Au ;
5) Hg .

PERIODIC SYSTEM OF ELEMENTS

1. In which compound, the oxidation state of hydrogen is -1 ?
1) HBr ;
2) NaOH ;
3) LiH ;
4) $\mathrm{H}_{2} \mathrm{O}_{2}$;
5) NH_{3}
2. An oxygen atom from a water molecule is hybridized:
1) sp ;
2) $d^{2} \mathrm{sp}^{3}$;
3) $s p^{3} d^{2}$;
4) sp^{3};
5) sp .
3. In the reaction of sodium with 200.36 g of water, 224 mL of hydrogen was released. Calculate the molality of the produced sodium-hydroxide solution. (Measurements were performed under normal conditions). $\operatorname{Ar}(\mathrm{Na})=23 ; \operatorname{Ar}(\mathrm{H})=1 ; \operatorname{Ar}(\mathrm{O})=16$.
1) 0,01 ;
2) 0,02 ;
3) 0,1 ;
4) 1 ;
5) 0,2 .
4. Find the false statement:
1) The general electronic configuration of the last energy level of alkali metal atoms is $n s^{1}$;
2) The first ionization energy of lithium is greater than the first ionization energy of rubidium;
3) Alkali metals are among the lightest metals;
4) For alkali metals, it is very difficult to release their electron building a positive M^{+}ion;
5) In chemical reactions, cesium is more reactive than sodium.
5. Which one of the listed compounds is superoxide?
1) $\mathrm{Na}_{2} \mathrm{O}_{2}$;
2) $\mathrm{Li}_{2} \mathrm{O}$;
3) $\mathrm{Na}_{2} \mathrm{O}$;
4) CO_{2};
5) KO_{2}.
6. Calculate the percentage of sodium in sodium bicarbonate. $\operatorname{Ar}(\mathrm{Na})=23 ; \operatorname{Ar}(\mathrm{H})=1 ; \operatorname{Ar}(\mathrm{C})=12$; $\operatorname{Ar}(\mathrm{O})=16$.
1) 23 ;
2) 46 ;
3) 27,38 ;
4) 76,22 ;
5) 80 .
7. Perchloric acide anhydride is:
1) $\mathrm{Cl}_{2} \mathrm{O}$;
2) $\mathrm{Cl}_{2} \mathrm{O}_{7}$;
3) HCl ;
4) ClO_{2};
5) NaCl .
8. The number of electrons, protons and neutrons in the ${ }_{2} \mathrm{He}^{4}$ atom is:
1) $\mathrm{e}^{-}=2 ; \mathrm{p}^{+}=2 ; \mathrm{n}^{0}=2$;
2) $\mathrm{e}^{-}=2 ; \mathrm{p}^{+}=2 ; \mathrm{n}^{0}=4$;
3) $\mathrm{e}^{-}=4 ; \mathrm{p}^{+}=2 ; \mathrm{n}^{0}=2$;
4) $\mathrm{e}^{-}=2 ; \mathrm{p}^{+}=4 ; \mathrm{n}^{0}=2$;
5) $\mathrm{e}^{-}=4 ; \mathrm{p}^{+}=4 ; \mathrm{n}^{0}=2$.

ALKANES

1. Which compound contains a quaternary carbon atom?
1) 2,4-dimethylpentane;
2) n-pentane;
3) neopentan;
4) isobutane;
5) n-heptane.
2. Which molecule has the highest boiling point?
1) Propane;
2) Isobutane;
3) n-Hexane;
4) Isopentane;
5) Neopentan.
3. Find the neopentyl group.
1)

4)

5) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$
4. In which compound, the rotation and formation of conformational isomers are possible?

1) n-pentane;
2) isoprene;
3) o-xylene;
4) eten;
5) 1,3-cyclopentadiene.
5. How many milliliters (mL) of carbon(IV)-oxide are released during combustion of 112 mL of ethane (normal conditions)?
1) 112 ;
2) 224 ;
3) 448 ;
4) 672 ;
5) 0,224 .
6. How many tertiary carbon atoms does a 5-ethyl-2,3-dimethylheptane molecule contain?
1) 7 ;
2) 5 ;
3) 4 ;
4) 0 ;
5) 3 .

ALKENE

1. Find the correct name of the alkyl group shown in the figure.

$$
\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}-
$$

1) propyl group;
2) isopropyl group;
3) vinyl group;
4) allyl group;
5) pentyl group.
2. In the reaction of 2-butene with potassium-permanganate at room temperature, the main product is:
1) 2-butanol;
2) butane;
3) 3-butanol;
4) 2,3-butanediol;
5) 2,3-butylene oxide.
3. In which of the following compounds, the geometric cis/trans isomerism occurs?
1) 2-methyl-2-butene;
2) 1-chloro-2-methyl-butane;
3) 1,2-butadiene;
4) isobutane;
5) 2-pentene.
4. Find the most stable alkene.

4) $\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
5)

5) $\mathrm{CH}_{2}=\mathrm{CH}_{2}$
3) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
5. Find the correct structure of the compound formed by the reaction of 3-methyl-1-pentene and hydrochloric acid without a catalyst.

2)

3)

4)

5)

6. Which compound is formed by the reaction of bromine and 2-butene at room temperature?

1) butyl-bromide;
2) 1,2-dibromo-butane;
3) sec-butyl-bromide;
4) tert-butyl-bromide;
5) 2,3-dibromobutane.
7. Which molecule does not contain a sp^{2}-hybridized carbon atom?
1) Isobutene;
2) 2-methyl-2-butene;
3) Vinyl chloride;
4) Benzene;
5) Cyclohexane.

ALKINES AND DIENES

1. Which compound has an acidic character?
1) 1-butene;
2) 2-butyne;
3) 2-methylbutane;
4) 4-methyl-2-pentine;
5) 1-butyne
2. Find the cumulated diene.
1) 1,3-pentadiene;
2) isoprene;
3) 1,4-pentadiene;
4) 1,2-pentadiene;
5) 1,3-cyclohexadiene.
3. Find the unknown compounds so that the stated chemical equation is written correctly.

1) $\mathrm{A}=$ propane; $\mathrm{B}=1,2$-dichloropropane; $\mathrm{C}=1$-propyne;
2) $\mathrm{A}=$ propane; $\mathrm{B}=1,1$-dichloropropane; $\mathrm{C}=1$-propyne;
3) $\mathrm{A}=$ propene; $\mathrm{B}=1,2$-dichloropropane; $\mathrm{C}=1$-propyne;
4) $\mathrm{A}=$ propane; $\mathrm{B}=1,2$-dichloropropane; $\mathrm{C}=1$-propene;
5) $\mathrm{A}=$ propene; $\mathrm{B}=1,2$-dichloropropane; $\mathrm{C}=1$-propene.
4. Find the structure of the compound that is formed when isoprene reacts with bromine in the molar ratio of $1: 2$.

5. Find the correct name of the shown compound.

1) 2,3-dimethyl-4-heptin;
2) 5,6-dimethyl-3-heptene;
3) 2,3-dimethyl-4-heptene;
4) 5,6-dimethyl-3-heptin;
5) neoheptin.
6. How many grams (g) of the reaction product are formed by the reaction of 3.4 g of isoprene and 0.1 mol of bromine? $\operatorname{Ar}(\operatorname{Br})=80 ; \operatorname{Ar}(\mathrm{C})=12 ; \operatorname{Ar}(\mathrm{H})=1$.
1) 11,2 ;
2) 38,8 ;
3) 22,8 ;
4) 112 ;
5) 19,4 .

CYCLOALKANES

1. Find the structure of cis-1,2-dichlorocyclobutane.

2. Find the correct name for the displayed structure.
1) cis-1-methyl-4-isopropylcyclohexane;
2) 1-methyl-4-isopropylcyclohexane;
3) trans-1-methyl-2-isopropylcyclohexane;
4) 1-methyl-4-isopropylhexane;
5) trans-1-methyl-4-isopropylcyclohexane.

3. How many geometric isomers of 1,2-dimethylcyclobutane are there?
1) 12 ;
2) 3 ;
3) 2 ;
4) 24 ;
5) 8 .
4. Find the compound formed in the reaction of cyclopentene and bromine.
1) 1,5-dibromopentane;
2) 1,1-dibromocyclopentane;
3) 1,2-dibromocyclopentane;
4) cyclopentyl-bromide;
5) 1,3-cyclopentadiene.
5. What is the product in the reaction of cyclohexane with hydrogen in the presence of nickel at $200^{\circ} \mathrm{C}$?
1) No reaction occurs;
2) n-hexane;
3) 1-hexene;
4) 2-hexene;
5) 1-cyclohexene.
6. What is the angular deformation of the tetrahedral angle during the construction of cyclopropane?
1) $109^{\circ} 28^{\prime}$;
2) $49^{\circ} 28^{\prime}$;
3) $19^{\circ} 28^{\prime}$;
4) 60°;
5) 90°.

AROMATIC HYDROCARBONS

1. Find the false statement.
1) Benzene does not react with potassium-permanganate;
2) The bond length between two C -atoms in benzene is between a single and a double bond;
3) Arenes do not dissolve in water;
4) Arenes are mainly toxic compounds;
5) Benzene and benzene derivatives are subject to free radical substitution reactions.
2. Find the structure of the compound corresponding to the name o-ethylbenzoic acid.

3. Find the electrophilic reagent.
1) $\mathrm{H}_{2} \mathrm{O}$;
2) OH^{-};
3) Br ;
4) $\mathrm{NO}_{2}{ }^{+}$;
5) CN^{-}.
4. Oxidation of isopropylbenzene with a strong oxidizing agent at high temperature gives one of the following compounds:
1) phthalic acid;
2) cyclohexene;
3) cyclohexanone;
4) acetic acid;
5) benzoic acid.
5. Which group is in the ortho-position relative to the methyl-group in the context of the present molecule?
1) -COOH ;
2) -Br ;
3) -NO ;
4) $-\mathrm{NO}_{2}$;
5) $-\mathrm{CH}_{3}$.

6. Find the electrophile that participates in the benzene nitration reaction.
1) HSO_{4}^{-};
2) $\mathrm{NO}_{2}{ }^{+}$;
3) SO_{3};
4) $\mathrm{H}_{2} \mathrm{O}$;
5) Br^{+}.

ALKYL HALOGENIDS

1. Which compound is formed in the reaction of 2-chloropropane with metallic sodium?
1)

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$

3)
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
4)
$\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}$

2. In which compound, it is not possible to substitute the present halogen?

1) allyl-chloride;
2) cyclohexyl-chloride;
3) benzyl-chloride;
4) chlorobenzene;
5) ethyl-chloride.
3. Calculate the percentage of bromine in o-dibromobenzene. $\operatorname{Ar}(\mathrm{C})=12 ; \operatorname{Ar}(\mathrm{H})=1 ; \operatorname{Ar}(\mathrm{Br})=80$.
1) 1,6 ;
2) 32,20 ;
3) 67,80 ;
4) 30 ;
5) 50 .
4. Find the compound formed in the addition reaction between vinyl-chloride and chlorine.
1) ethyl-chloride;
2) 1,2 -dichloroethene;
3) 1,1,2-trichloroethane;
4) ethin;
5) 1,1,2,2-tetrachloroethane.
5. Which compound should be treated with phosphorus(III)-chloride to obtain isobutyl-chloride?
1) 1-butanol;
2) sec-butanol;
3) tert-butanol;
4) 2-butanone;
5) 2-methyl-1-propanol.
6. Which compound is formed in the reaction of propyl-chloride and water?
1) Propene;
2) Propanol;
3) Propyne;
4) 1,2-propanediol;
5) Glycerol.

ALCOHOLS

1. How many different alcohols of molecular formula $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$ are there?
1) 4 ;
2) 10 ;
3) 5 ;
4) 14 ;
5) 1 .
2. Which compound is formed as the final product in the reaction of methyl-magnesium-bromide with propanal, and some mineral acid?
1) 2-butanol;
2) Methanol;
3) Propanol;
4) Propanoic acid;
5) Butanone.
3. Which pair of compounds can be used to obtain 3-methyl-2-butanol?
1) Ethyl-magnesium-chloride and propanone;
2) Methyl-magnesium-bromide and propanal;
3) Isobutyl-magnesium-iodide and formaldehyde;
4) Isopropyl-magnesium-chloride and ethanal;
5) Isopropyl-magnesium-chloride and propanal.
4. Find the unknown compounds so that the following chemical equation is correctly written:

1) $\mathrm{A}=$ tert-butyl-hydrogensulfate; $\mathrm{B}=$ isobutanol;
2) $\mathrm{A}=$ tert-butyl-hydrogensulfate; $\mathrm{B}=$ tert-butanol;
3) $\mathrm{A}=$ tert-butyl-sulfate; $\mathrm{B}=$ tert-butanol;
4) $A=$ isobutyl-hydrogensulfate; $B=$ isobutanol;
5) $\mathrm{A}=$ sec-butyl-hydrogensulfate; $\mathrm{B}=$ sec-butanol.
5. Which compound is not ether?
1) o-cresol;
2) 1,4-dioxane;
3) Tetrahydrofuran;
4) Methoxy-benzene;
5) Vinyl-ethyl-ether.
6. Which alcohol cannot be obtained by the reduction of aldehydes and ketones?
1) sec-butanol;
2) 2-methyl-1-butanol;
3) 2-methyl-2-butanol;
4) Neopentanol;
5) Isopropanol.
7. Which compound is formed in the reaction of 2-methyl-1-propanol with potassium-dichromate?
1) Isobutene;
2) Butanone;
3) Propanal;
4) 2-methyl-propanal;
5) Acetone.

ALDEHYDES AND KETONES

1. Find the correct name of the compound shown in the figure.
1) 2-methyl-2-penten-3-one;
2) 4-methyl-3-penten-2-one;
3) methyl isobutyl ketone;
4) 2-butenal;
5) acrolein.

2. Find the structure of the compound corresponding to the name 2-methyl-2-propenal.

3. Which compound is formed in the reaction of ethanol and ethanol in the molar ratio of $1: 1$ in an acidic medium?
1)Ethyl methyl ether;
2) Diethyl ketone;
3) 1-ethoxy-1-ethanol;
4) 1-butanol;
5) 1,1-butanediol.
4. Which compound can be formed when o-hydroxy-benzaldehyde is oxidized only at the aldehyde group?
1) Benzoic acid;
2) Salicylic acid;
3) Phthalic acid;
4) Quinone;
5) Cyclohexanone.
5. Which compound is formed by the reaction of butanal with hydrogen in the presence of nickel as a catalyst?
1) Buten;
2) Bhutan;
3) Butanoic acid;
4) 1-butanol;
5) Butanone.

CARBOXYLIC ACIDS

1. Find the structure of the compound that corresponds to the name 2-methyl-2-butenoic acid.

4)

2)

5)
$\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{COOH}$
2. Which compound is obtained by heating calcium-acetate at high temperatures?

1) Methane;
2) Ethane;
3) Propanal;
4) Ethanoic acid;
5) Acetone.
3. Determine the molecular formula of a carboxylic acid containing 48.6% carbon, 8.1% hydrogen and 43.2% oxygen. $\operatorname{Ar}(\mathrm{C})=12 ; \operatorname{Ar}(\mathrm{O})=16 ; \operatorname{Ar}(\mathrm{H})=1$.
1) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$;
2) $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{2}$;
3) $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}$;
4) $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{2}$;
5) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}$.
4. Why is a chloroacetic acid stronger acid than an acetic acid?
1) Because the hydrocarbon chain is longer in a hydrochloric acid;
2) Because the chlorine atom has a negative inductive effect;
3) Because the chlorine atom has a low ionization energy;
4) Because the chlorine atom has the property of easily transferring its electrons to the neighboring atoms;
5) The chlorine atom has no effect on the strength of the observed acids.
5. Find the compound with the most acidic character.
1) Methane acid;
2) Ethanoic acid;
3) Trichloroacetic acid;
4) Monochloroacetic acid;
5) Propanoic acid.
6. Which compound can form a propanoic acid by oxidation?
1) Propane;
2) Propyl-benzene;
3) Butanal;
4) Butanol;
5) Propanol.

FUNCTIONAL DERIVATIVES OF CARBOXYLIC ACIDS

1. The reaction of the functional derivatives of carboxylic acids with ammonia is:
1) Decarboxylation;
2) Reduction;
3) Hydrolysis;
4) Alcoholism;
5) Amonolysis.
2. Which compound is formed in the reaction of a butanoic acid and phosphorus(III)-chloride?
1) Butyl chloride;
2) Butanoyl chloride;
3) Butanal;
4) 2-butanone;
5) 2-chloro-butanoic acid.
3. Which compound is formed in the reaction of sodium-propanoate and propanoyl-chloride?

4. Which compound is an amide?

2)

$\mathrm{CH}_{3} \mathrm{NO}_{2}$
$\mathrm{CH}_{3}-\mathrm{NH}-\mathrm{CH}_{2} \mathrm{CH}_{3}$

5. Which compound is formed in the reaction of butanoyl-chloride and ammonia?

1) Bhutan;
2) Buten;
3) Butanol;
4) Butanamide;
5) Butyl amine.

ORGANIC COMPOUNDS WITH SULFUR

1. Find the sulfoxide.

3)

$\mathrm{CH}_{3}-\mathrm{S}-\mathrm{S}-\mathrm{CH}_{3}$

2. Which compound is formed in the reaction of propene with hydrogen-sulfide in the presence of light?

1) 1-propene-3-thiol;
2) Propanthiol;
3) 1-propene-1-thiol;
4) 2-propanethiol;
5) Dipropyl thioether.
3. Find the name of the compound shown in the figure.

$$
\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{S}-\mathrm{S}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}
$$

1) Diallyl-thioether;
2) 1-propene-3-thiol;
3) Diallyl-disulfide;
4) Diallyl-sulfoxide;
5) Diallyl-sulfone.
4. What type of the compound is formed in the reaction of hydrogen-peroxide and sulfides (thioethers) at room temperature?
1) Sulfons;
2) Sulfoxides;
3) Mercaptans;
4) Disulfides;
5) Sulfonic acids.
5. Find the correct name of the molecule shown in the figure.
1) propanol;
2) 1-mercapto-3-propanol;
3) 1,3-dimercapto-2-propanol;
4) 1,2-dimercaptopropane;

5) 2,3-dimercapto-1-propanol.

AMINES AND NITRO-COMPOUNDS

1. Find the unknown compounds so that shown chemical transformations are correct.

1) $\mathrm{A}=\mathrm{HNO}_{2} / \mathrm{H}_{2} \mathrm{SO}_{4} ; \mathrm{B}=\mathrm{Fe} / \mathrm{HCl}$;
2) $\mathrm{A}=\mathrm{HNO}_{3} / \mathrm{H}_{2} \mathrm{SO}_{4} ; \mathrm{B}=\mathrm{Fe} / \mathrm{HCl}$;
3) $\mathrm{A}=\mathrm{HNO}_{3} / \mathrm{H}_{2} \mathrm{SO}_{4} ; \mathrm{B}=\mathrm{NH}_{3}$;
4) $\mathrm{A}=\mathrm{HNO}_{2} ; \mathrm{B}=\mathrm{Fe} / \mathrm{HCl}$;
5) $\mathrm{A}=\mathrm{HNO}_{3} / \mathrm{H}_{2} \mathrm{SO}_{4} ; \mathrm{B}=\mathrm{NH}_{4} \mathrm{OH}$.
2. Which compound is a secondary amine?

3. Find the name that corresponds to the compound shown in the figure.

1) Aniline;
2) Phenylmethylamine;
3) N-methyl-aniline;
4) Benzylamine;
5) Cyclohexylamine.
4. Which compound is formed in the reaction of ethyl methyl-amine with a nitric acid?

5. In which case does the quaternary ammonium ion occur?
1) Trimethyl-amine;
2) N-methyl-aniline;
3) Benzyl-amine;
4) Acetylcholine;
5) Sulfanilamide
6. Find the primary aromatic amine.
1) Benzyl-amine;
2) N, N-dimethyl-aniline;
3) Trimethyl-amine;
4) Cyclohexyl-amine;
5) Aniline.

HETEROCYCLIC COMPOUNDS

1. Which compound is part of the porphyrin ring?
1) Pyridine;
2) Quinoline;
3) Imidazole;
4) Pyrimidine;
5) Pyrrole.
2. Which metal ion is part of vitamin B12?
1) Fe^{2+};
2) Mg^{2+};
3) Fe^{3+};
4) Co^{2+};
5) Na^{+}.
3. Which compound is formed by decarboxylation of histidine?
1) 1,3-imidazole;
2) Ethyl-amine;
3) Pyrrole;
4) Pyrrolidine;
5) Histamine.
4. Cytosine, thymine and uracil are derivatives of one heterocyclic compound:
1) 1,3-thiazole;
2) purine;
3) 1,3-diazine;
4) imidazole;
5) pyridine.
5. Which of the following bases is only part of the RNA molecules?
1) Adenine;
2) Cytosine;
3) Guanine;
4) Uracil;
5) Thyme.
6. Find the structure of 1,3-oxazole.
1)

2)

3)

4)

5)

CARBOHYDRATES

1. Which monosaccharide molecule is part of the ribonucleic acid?
1) Ribose;
2) Glucose;
3) 2-deoxy-ribose;
4) Chalcosis;
5) Fructose.
2. Which sugar component is part of the DNA molecules?
1) Ribose;
2) Glucose;
3) Mannose;
4) Fructose;
5) 2-deoxy-D-ribose.
3. Find a molecule that represents 4-epimer-D-glucose.
1) D-mannose;
2) D-fructose;
3) L-glucose;
4) D-galactose;
5) L-mannose.
4. Find the structure of β-D-glucopyranose.

5. Find the structure of α-D-fructofuranose.

6. Which molecule of disaccharides, in addition to glucose molecules, also contains molecules of fructose?
1) Amylopectin;
2) Amylose;
3) Lactose;
4) Maltose;
5) Sucrose.

LIPIDS

1. Find the essential fatty acid.
1) Palmitic;
2) Arachidonic;
3) Palmitoleic;
4) Stearin;
5) Oleic.
2. Which lipids fall into the category of unsaponifiable lipids?
1) Neutral fats;
2) Phosphoglycerides;
3) Sphingolipids;
4) Waxes;
5) Steroids.
3. Which compound needs to be exposed to the sunlight to form Vitamin D3?
1) Ergosterol;
2) Vitamin $D 2$;
3) 7-dehydrocholesterol;
4) Lanosterol;
5) Cholesterol.
4. Rickets (Rachitis) occurs in children due to the lack of \qquad .
1) vitamin C;
2) vitamin A;
3) vitamin E;
4) vitamin D;
5) vitamin K.
5. How many moles of hydrogen are needed for complete hydrogenization of 2.8 g of linoleic acid? $\operatorname{Ar}(\mathrm{C})=12 ; \operatorname{Ar}(\mathrm{H})=1 ; \operatorname{Ar}(\mathrm{O})=16$.
1) 0,01 ;
2) 0,02 ;
3) 2 ;
4) 1 ;
5) 0,03 .

AMINO ACIDS AND PROTEINS

1. Find an amino acid that does not contain a chiral (asymmetric) carbon atom.

2. Find an amino acid that contains the thioether group in the side chain.
1) Methyllysine;
2) Lysine;
3) Isoleucine;
4) Methionine;
5) Cysteine.
3. Which amino acid contains the carboxyl group in the side chain?
1) Gln ;
2) Asn;
3) Asp;
4) Ser;
5) Met.
4. Find the correct name for the compound shown in the figure.
1) Alanylphenylalanine;
2) Alanine-phenylalanine;
3) Phenylalanine-alanine;
4) Alaninephenylalanyl;
5) Valyltyrosine.

5. When, in the case of amino acids, the carboxyl group is deprotonated and the amino group is protonated, then the amino acid is in the form of:
1) zwitter-ion;
2) anion;
3) cation;
4) free radical;
5) such a form of amino acid is not possible.
6. Which amino acid does not fall into the category of essential for the human body?
1) Valine;
2) Leucine;
3) Alanine;
4) Histidine;
5) Phenylalanine.
7. Which molecule containes the iron ion?
1) Chlorophyll;
2) Cystine;
3) Hemoglobin;
4) Tyrosine oxidase;
5) Aniline.

NUCLEIC ACIDS

1. Find the structure of cytosine.

2. Find the correct name for the compound shown in the figure.
1) Deoxycytidine;
2) Deoxycytosine;
3) Cytidine monophosphate;
4) Deoxycytidine monophosphate;
5) Cytidine.

3. Find the correct name for the compound shown in the figure.
1) Deoxycytidine;
2) Deoxycytosine;
3) Cytidine monophosphate;
4) Deoxycytidine monophosphate;
5) Cytidine.

4. Which base is complementary to the purine base adenine in the DNA molecule?
1) Guanine;
2) Cytosine;
3) Thyme;
4) Uracil;
5) Guanosine.
5. Which nitrogen base is incorporated against guanine during the DNA replication?
1) Cytosine;
2) Thyme;
3) Adenine;
4) Uracil;
5) Purine.
6. Find the molecule of nucleotide.
1) Pyrimidine;
2) Adenyl acid;
3) Deoxycytidine;
4) Guanosine;
5) Uridine.
7. Find the molecule of nucleoside.
1) Deoxyadenosine monophosphate;
2) Adenine;
3) Cytidine monophosphate;
4) Guanine;
5) Uridine.
8. What is the chemical structure of adenosine monophosphate (AMP)?
1) Pyrimidine base;
2) Nucleotide;
3) Nucleoside;
4) Carboxylic acid;
5) Diene.
