PHYSICAL PROPERTIS AND UNITS OF MEASUREMENT

- 1. If n-hexane boils at 68°C, calculate the boiling temperature of the specified compound in Kelvin degrees (K = Kelvin).
 - 1) 241 K;
 - 2) 341 K;
 - 3) 273 K;
 - 4) 205 K;
 - 5) 68 K.
- 2. How many cubic meters are 750 mm³?
 - $\begin{array}{c} 1) \ 7,5\cdot 10^{-9} \ m^3;\\ 2) \ 7,5\cdot 10^{-6} \ m^3;\\ 3) \ 7,5\cdot 10^{-5} \ m^3;\\ 4) \ 7,5\cdot 10^{-7} \ m^3;\\ 5) \ 0,75 \ m^3. \end{array}$
- 3. Find the derived SI unit.
 - Hertz (Hz);
 Meter (m);
 Second (s);
 Ampere (A);
 Candela (cd).
- 4. Hydrochloric acid (HCl) with the percentage concentration of 36.5% has a density of 1.18 g/cm^3 . Express the density of the acid in the form of (g/dm³).
 - 1) 1,18 · 10⁻³g/dm³; 2) 1,18 · 10³g/dm³; 3) 1,18 · 10⁶g/dm³; 4) 1,18 · 10²g/dm³; 5) 1,18 · 10⁻⁶g/dm³.

MATTER. ATOM STRUCTURE

- 1. A saturated solution of sodium chloride in water contains 2.1 g of salt in the form of a precipitate. What is the most convenient way to quantitatively separate the precipitate from the previously mentioned mixture?
 - 1) Filtration;
 - 2) Decanting;
 - 3) Sedimentation;
 - 4) Extraction;
 - 5) Mixing.

- 2. At the moment when the solvent vapor pressure above the solution is equalized with the external pressure during the solution heating, there occurs a phenomenon called:
 - 1) evaporation;
 - 2) deposition;
 - 3) melting;
 - 4) boiling;
 - 5) sublimation.
- 3. Calculate the number of neutrons in the nucleus of sodium ions Na⁺ if we know that the atomic number of atom is 11, and the mass number is 23.
 - 1) 10;
 - 2) 11;
 - 3) 23;
 - 4) 12;
 - 5) 13.
- 4. On the basis of the electronic configurations of atoms of individual elements, draw a conclusion which atom has the highest value of ionization energy.
 - $\begin{array}{l} 1) \ 1s^22s^22p^63s^1;\\ 2) \ 1s^22s^22p^63s^23p^64s^2;\\ 3) \ 1s^22s^22p^63s^23p^5;\\ 4) \ 1s^22s^22p^63s^23p^64s^23d^{10}4p^3;\\ 5) \ 1s^22s^22p^63s^23p^4. \end{array}$
- 5. Find orbitals that are characterized by the major quantum number n = 3 and the secondary quantum number l = 2.
 - 3p- orbitals;
 3s- orbital;
 3d- orbitals;
 4f- orbitals;
 2s- orbital.

CHEMICAL BOND

- 1. Durin the formation of a polar covalent bond between a hydrogen atom and a chlorine atom in a hydrogen chloride molecule, the following orbitals overlap: (₁H and ₁₇Cl)
 - 1) 1s H and 3p Cl;
 2) 1s H and 3s Cl;
 3) 1s H and 2s Cl;
 4) 1s H and 2p Cl;
 5) 2s H and 3p Cl.

- 2. Calculate the order of the bond in the O_2 molecule if it is known that the order number of oxygen atom is 8 ($_{8}O$).
 - 1) 1,5;
 - 2) 3;
 - 3) 2;
 - 4) 2,5;
 - 5) 1.
- 3. Based on the value of electronegativity of individual elements, predict in which case the bond with the most expressed covalent character is formed. $\chi(Li) = 1$; $\chi(Cl) = 3$; $\chi(H) = 2,1$; $\chi(Mg) = 1,2$; $\chi(O) = 3,5$; $\chi(F) = 4$; $\chi(Na) = 0,9$; $\chi(Br) = 2,8$.
 - 1) LiCl;
 - 2) HCl;
 - 3) MgO;
 - 4) HF;
 - 5) NaBr.
- 4. Which bond is cleaved by the dissociation of a complex compound [Ag(NH₃)₂]Cl?
 - 1) Coordinate-covalent bond;
 - 2) Metal connection;
 - 3) Ionic bond;
 - 4) Covalent bond;
 - 5) Hydrogen bond.
- 5. Find the TRUE statement:
 - 6) Molecules with unpaired electrons in molecular orbitals are called diamagnetic molecules;
 - 7) The carbon atoms in the ethane molecule are sp^2 -hybridized;
 - 8) The boron atom in the BCl₃ molecule is sp³-hybridized;
 - 9) The formation of the π -bond is performed by overlapping one s-orbital and one sp-hybridized atomic orbital;
 - 10) The metal of the crystal lattice can be: body-centered cubic (Li), surface-centered cubic (Cu) as well as a hexagonal (Zn).

BASIC CHEMICAL LAWS

- 1. Which of the above-mentiond examples is not possible to illustrate the law of multiple proportions.
 - 1) Water and hydrogen peroxide;
 - 2) Sulfur dioxide and sulfur trioxide;
 - 3) Nitrogen(I)-oxide, nitrogen(II)-oxide, nitrogen(III)-oxide, nitrogen(IV)-oxide, nitrogen(V)-oxide;
 - 4) Water and methane;
 - 5) Carbon monoxide and carbon dioxide.

- 2. In which the weight ratio carbon and oxygen were combined in the molecule of the carbon(IV)-oxide? Ar(C) = 12; Ar(O) = 16.
 - 1) 3:8; 2) 1:2; 3) 2:1; 4) 3:4;
 - 5) 12:16.
- 3. What is the volume of 1 mole of oxygen at a temperature of 0 ° C and pressure of 101,325 kPa?
 - 1) 32 cm³; 2) 22,4 dm³; 3) 224 cm³; 4) 16 g; 5) 22,4 m³.
- 4. Find the empirical formula of a compound consisting of: 58.82% of carbon, 9.80% of hydrogen and 31.37% of oxygen. Ar(C) = 12; Ar(H) = 1; Ar(O) = 16.
 - 1) CHO; 2) C₅H₁₀O₂; 3) C₅H₁₀; 4) C₅O₂; 5) C₂H₁₀O₅.
- 5. Calculate the percentage of sulfur in copper(II)-sulfate pentahydrate. Ar(Cu) = 63,55; Ar(S) = 32; Ar(O) = 16; Ar(H) = 1.
 - 1) 12,82%; 2) 87,18%; 3) 20,06%; 4) 79,94%; 5) 32%.

CHEMICAL REACTIONS. CALCULATIONS BASED ON CHEMICAL EQUATIONS

1. What is the mass of 0.72 mol of sulfur(IV)-oxide (SO_2) ? Ar(S) = 32; Ar(O) = 16.

1) 46,08 g; 2) 46,08 mg; 3) 46,08 kg; 4) 34,56 g; 5) 54 g.

- 2. 1,08·10²⁴ oxygen atoms are found in: (Ar(H) = 1; Ar(O) = 16; Ar(S) = 32; Ar(Hg) = 200; Ar(C) = 12; Ar(N) = 14.)
 1) 11,2 dm³ gas CO₂;
 2) 0,15 mols HNO₃;
 3) 3,6·10²³ molecule of H₂O;
 4) 44,1 g H₂SO₄;
 5) 10 g HgO.
- 3. Calculate the mass (g) of carbonic acid containing the same number of molecules as $1.8 \cdot 10-3 \text{ dm}^3$ of water at room temperature. Ar(H) = 1; Ar(C) = 12; Ar(O) = 16.
 - 1) 0,0498; 2) 1,8; 3) 0,62; 4) 0,018; 5) 6,2.
- 4. How many oxygen atoms are in 31.5 g of nitric acid? Ar(H) = 1; Ar(N) = 14; Ar(O) = 16.
 - 1) $9 \cdot 10^{23}$; 2) $6 \cdot 10^{23}$; 3) $9 \cdot 10^{-23}$; 4) $3 \cdot 10^{23}$; 5) $6 \cdot 10^{-23}$.
- 5. What is the volume (dm^3) of $3,6 \cdot 10^{23}$ molecules of carbon(IV)-oxide? (Measurements were performed under the normal conditions).
 - 1) 1344; 2) 1,344; 3) 22,4; 4) 13,44; 5) 134,4.

ENERGY CHANGES IN CHEMICAL REACTIONS (THERMOCHEMISTRY)

- 1. The thermal content of substances is called enthalpy, and is denoted by:
 - 1) G;
 - 2) S;
 - 3) A;
 - 4) H;
 - 5) T.

- 2. How much energy is released during the reaction of 5.4 g of aluminum? $Fe_2O_3(s) + 2 Al(s) \rightarrow Al_2O_3(s) + 2Fe(s) \Delta_rH = -847,8 \text{ kJ/mol}$ Ar(Al) = 27; Ar(Fe) = 56; Ar(O) = 16.
 - 1) 84,78 kJ; 2) 84,78 kJ; 3) -169,59 kJ; 4) 169,59 kJ; 5) - 8,478 kJ.
- 3. In which case, the system is in equilibrium?
 - 1) $\Delta G < 0;$ 2) $\Delta S < 0;$ 3) $\Delta H = 0;$ 4) $\Delta G = 0;$ 5) $\Delta S < \Delta H/T.$
- 4. In which case, the entropy of the system decreases, ie. $\Delta S < 0$?
 - 1) Evaporation of liquids;
 - 2) Iodine sublimation;
 - 3) Ice Melting;
 - 4) Combining of mercury and oxygen with formation of mercury(II)-oxide;
 - 5) Thermal decomposition of potassium chlorate.
- 5. Calculate the standard enthalpy of ethanol formation based on the following data and the stated chemical reaction: $\Delta_{\rm f} H({\rm CO}_2) = -393,5 \text{ kJ/mol}; \Delta_{\rm f} H({\rm H}_2{\rm O}) = -285,8 \text{ kJ/mol}$

 $C_2H_5OH(l) + 3O_2(g) \rightarrow 2 CO_2(g) + 3H_2O(l) \Delta_rH = -1366,8 \text{ kJ/mol}$

1) 277,6 kJ/mol; 2) -277,6 kJ/mol; 3) 393,5 kJ/mol; 4) 285,8 kJ/mol; 5) 1316,8 kJ/mol.

CHEMICAL REACTION RATE. EQUILIBRIUM

1. Find the correctly written expression for the rate of a chemical reaction based on the law of mass action for the next chemical reaction $2 \operatorname{NO}(g) + O_2(g) \rightarrow 2 \operatorname{NO}_2(g)$.

1) $v = k \cdot [NO] \cdot [O_2];$ 2) $v = k \cdot [NO_2];$ 3) $v = k \cdot [NO_2]^2;$ 4) $v = k \cdot [NO]^2 \cdot [O_2]^2;$ 5) $v = k \cdot [NO]^2 \cdot [O_2].$ 2. How will the value of the rate of direct chemical reaction change if the concentration of reactants increases three times?

 $2 \operatorname{NOCl}(g) \rightleftharpoons 2 \operatorname{NO}(g) + \operatorname{Cl}_2(g)$

- 1) the rate will not change;
- 2) the rate is increased three times;
- 3) the rate is reduced three times;
- 4) the rate is increased nine times;
- 5) the rate is reduced nine times.
- 3. Hydrogen peroxide decomposes spontaneously into water and oxygen in the presence of manganesedioxide. Manganese-dioxide for this chemical reaction is:
 - 1) reactant;
 - 2) reaction product;
 - 3) activated complex;
 - 4) catalyst;
 - 5) inhibitor.
- 4. How does the reaction rate $A(aq) + 3B(aq) \rightarrow 2C(aq)$ change if the concentration of reactant A increases twice and the concentration of reactant B decreases twice?
 - 1) The reaction rate is increased four times;
 - 2) The reaction rate will not change;
 - 3) The reaction rate is reduced four times;
 - 4) The reaction rate is doubled;
 - 5) The reaction rate is reduced twice.
- 5. How will the position of equilibrium of the system 2 HI(g) \rightleftharpoons H₂(g) + I₂(g) be affected by the increasement of pressure?
 - 1) The equilibrium shifts to the right;
 - 2) The equilibrium shifts to the left;
 - 3) The specified change will not affect the equilibrium position;
 - 4) The equilibrium shifts in the direction of the decomposition of hydrogen iodide;
 - 5) The equilibrium shifts in the direction of hydrogen iodide formation.
- 6. Calculate the equilibrium constant of the following reaction: $CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$ if the equilibrium concentration for CO is 0,1 mol/dm³, for H₂ 0,3 mol/dm³ and for CH₃OH is 0,45 mol/dm³.
 - 1) 5;
 - 2) 0,5;
 - 3) 15;
 - 4) 1,5;
 - 5) 50.

OXIDO-REDUCTION REACTIONS

- 1. Find the accurate statement:
 - 1) Hydrogen in its compounds always has the oxidation state of +1;
 - 2) Alkali metals can also have negative oxidation states;
 - 3) Fluorine most often occurs in its compounds with the oxidation state -1, but it also occurs often with positive oxidation states;
 - 4) The algebraic sum of the oxidation numbers of the elements in the molecule is zero;
 - 5) The algebraic sum of the oxidation numbers of the elements in a complex ion is equal to zero.
- 2. Determine the coefficients of the following chemical reaction: $HNO_3 + Ag_2S \rightarrow AgNO_3 + NO_2 + S + H_2O$

1) $HNO_3 + Ag_2S \rightarrow 2AgNO_3 + NO_2 + S + H_2O;$ 2) $2HNO_3 + Ag_2S \rightarrow AgNO_3 + NO_2 + S + H_2O;$ 3) $HNO_3 + Ag_2S \rightarrow 2AgNO_3 + 2NO_2 + S + H_2O;$ 4) $4HNO_3 + Ag_2S \rightarrow AgNO_3 + 2 NO_2 + S + H_2O;$ 5) $4 HNO_3 + Ag_2S \rightarrow 2 AgNO_3 + 2 NO_2 + S + 2 H_2O.$

- 3. Which compound acts as a reducing agent only?
 - 1) HNO₂; 2) H₂SO₃; 3) H₂S; 4) SO₃; 5) MnO₂.
- 4. Find the reaction in which the oxidation of chlorine occurred.

1) $\operatorname{SnCl}_2 + \operatorname{Cl}_2 \rightarrow \operatorname{SnCl}_4$; 2) $\operatorname{NaCl} + \operatorname{AgNO}_3 \rightarrow \operatorname{AgCl} + \operatorname{NaNO}_3$; 3) $\operatorname{MnO}_2 + 4\operatorname{HCl} \rightarrow \operatorname{Cl}_2 + \operatorname{MnCl}_2 + 2 \operatorname{H}_2\operatorname{O}$; 4) $\operatorname{HClO} \rightarrow \operatorname{HCl} + \operatorname{O}$; 5) $\operatorname{KIO}_3 + 5\operatorname{KI} + 6\operatorname{HCl} \rightarrow 6\operatorname{KCl} + 3\operatorname{I}_2 + 3\operatorname{H}_2\operatorname{O}$.

- 5. How many grams of (g) ammonium-dichromate are needed in order to obtain 30 mmol of chromium (III) oxide by the reaction of decomposition? Ar(N) = 14; Ar(H) = 1; Ar(Cr) = 52; Ar(O) = 16.
 - 1) 4,56; 2) 7,56; 3) 45,6; 4) 75,6; 5) 456.
- 6. How many moles (mol) of the oxidizing agent are needed to obtain $1,2\cdot10^{20}$ chlorine atoms in the reaction of potassium-permanganate and hydrochloric acid?
 - 1) $4 \cdot 10^{3}$; 2) $0, 4 \cdot 10^{-2}$; 3) $4 \cdot 10^{-5}$; 4) 10^{-3} ; 5) 10^{-4} .

ION (IONIC) REACTIONS

1. Show the reaction of aluminum-chloride and sodium-hydroxide in the ionic form.

1) $AlCl_3 + 3NaOH \rightarrow Al(OH)_3 + 3NaCl;$ 2) $Al^{3+} + 3Cl^- + 3Na^+ + 3OH^- \rightarrow Al(OH)_3 + 3Na^+ + 3Cl^-;$ 3) $Al^{3+} + 3Cl^- + Na^+ + OH^- \rightarrow Al^{3+} + 3OH^- + Na^+ + 3Cl^-;$ 4) $AlCl_3 + Na^+ + OH^- \rightarrow Al(OH)_3 + Na^+ + Cl^-;$ 5) $Al^{3+} + 3Cl^- + 3NaOH \rightarrow Al(OH)_3 + 3Na^+ + 3Cl^-.$

- 2. Find the compound that should be written in the form of molecule in ionic reactions.
 - 1) HBr; 2) LiOH; 3) NH₄Cl; 4) AgCl; 5) NaNO₃.
- 3. Find a series which includes only those compounds that are shown in ionic reactions in the form of ions?

CO, H₂O, Mg(OH)₂, HCl;
 CH₄, HBr, NaOH, AgCl;
 H₂SO₄, KOH, Al₂(SO₄)₃, NaCl;
 HNO₃, BaSO₄, Ca(OH)₂, KNO₃;
 HClO₄, Al(OH)₃, KCl, LiOH.

- 4. The reaction of barium-chloride and sulfuric acid produces the compound with low solubility:
 - 1) Hydrochloric acid;
 - 2) Barium-sulphate;
 - 3) Barium-chloride;
 - 4) 4) Barium-sulphite;
 - 5) Sulfuric acid.
- 5. Find the incorrect statement.
 - 1) Substitution is a chemical reaction of replacing atoms or groups of atoms in the molecules of reactants with other atoms or atomic groups;
 - Reactions of analysis are reactions of combining two or more simple substances into a new, more complex substance;
 - 3) The reaction $BaSO_4 + Na_2CO_3 \rightarrow BaCO_3 + Na_2SO_4$ represents the exchange reaction;
 - 4) In ionic reactions, silver-chloride is a low soluble compound and is written in the form of molecule;
 - 5) 5) The reaction 8 Fe + S8 \rightarrow 8 FeS represents the reaction of synthesis.

SOLUTIONS

- 1. The process opposite to the dissolution process is called:
 - 1) solvation;
 - 2) hydration;
 - 3) distillation;
 - 4) filtration;
 - 5) crystallization.
- 2. The solubility of potassium-chloride is 37.2 g at 30 ° C. How many grams (g) of potassium-chloride are in 55.33 g of a saturated solution of this salt?
 - 1) 137,32; 2) 18,13; 3) 15,00; 4) 20,58; 5) 92,53.
- 3. What is the molar concentration of the solution of sulfuric acid with a percentage concentration of 96% if the density of that solution is $1,84 \text{ g/cm}^3$. Ar(H) = 1; Ar(S) = 32; Ar(O) = 16.
 - 1) 52,17; 2) 0,98; 3) 4; 4) 244,90; 5) 0,02.
- 4. What is the molar concentration (mol/dm³) of the solution formed by mixing of 150 mL of $1 \cdot 10^{-3}$ mol/dm³ sodium hydroxide solution and 350 mL of 0.05 mol/dm³ sodium hydroxide solution.
 - 1) $1,5 \cdot 10^{-4}$; 2) $1,75 \cdot 10^{-2}$; 3) $1,75 \cdot 10^{-3}$; 4) $3,53 \cdot 10^{-2}$; 5) $3,53 \cdot 10^{-4}$.
- 5. Calculate the mass concentration (g/dm^3) of the nitric acid water solution whose quantitative concentration is 0.15 mol/dm³. Ar(H) = 1; Ar(N) = 14; Ar(O) = 16.
 - 1) 9,45; 2) 94,5; 3) 0,945; 4) 1,5; 5) 15.
- 6. How many grams (g) of calcium-phosphate are needed to prepare 180 mL of the solution with a concentration of 0.08 mol/dm³? Ar(Ca) = 40; Ar(P) = 31; Ar(O) = 16.
 - 1) 0,0144; 2) 1,44; 3) 0,08;

- 4) 4,464; 5) 8.
- 7. Calculate the molarity of the aqueous sodium-chloride solution containing 0.004 moles of dissolved substance in 20 mL of the solution. Ar(Na) = 23; Ar(Cl) = 35,5.
 - 1) 4; 2) 0,2; 3) 0,4; 4) 2; 5) 0,04.
- 8. The percentage concentration of the solution formed by dissolving 5.6 g of calcium-oxide in 40.65 mL of water is: Ar(Ca) = 40; Ar(H) = 1; Ar(O) = 16
 - 1) 13,78% CaO; 2) 18,20% Ca(OH)₂; 3) 12,11% CaO; 4) 16% Ca(OH)₂; 5) 7,4% Ca(OH)₂.
- 9. Calculate the molar concentration (mol/kg) of the hydrochloric acid solution at the concentration of 11.70 mol/dm^3 if the density of the solution is 1.18 g/mL. Ar(H) = 1; Ar(Cl) = 35,5.
 - 1) 15,54; 2) 36,2; 3) 0,365; 4) 0,15; 5) 1,55.
- 10. The ratio of the amount of dissolved substance and the volume of the solution is:
 - 1) molal concentration;
 - 2) percentage concentration;
 - 3) molar concentration;
 - 4) mass concentration;
 - 5) molar (mole) fraction.

COLLOIDAL SOLUTIONS

- 1. The particle size of the dispersed phase in colloid dispersed systems is in the range from:
 - 1) Less than 1 nm; 2) From 1 to 10 nm;
 - 3) From 1 to 100 nm;
 - 4) Larger than 100 nm;
 - 5) 2 nm.

- 2. Coagulation of colloidal solutions is:
 - 1) diluting the solution;
 - 2) dissolution process;
 - 3) decanting process;
 - 4) the process of precipitation of colloidal solutions;
 - 5) adsorption process
- 3. Which of the following solutions are not the real solutions?
 - 1) Sugar in water;
 - 2) Solution of sodium-chloride in water;
 - 3) Milk;
 - 4) Diluted solution of hydrochloric acid;
 - 5) Aqueous solution of potassium nitrate.
- 4. By adding a larger amount of water, the gel can pass into:
 - 1) the real solution;
 - 2) hydrophobic colloidal solution;
 - 3) crystal;
 - 4) salt;
 - 5) there are no changes on that occasion.
- 5. What is the name of the process that occurs when a large amount of water is added to coagulated silverchloride?
 - 1) Faraday-Tyndall effect;
 - 2) Coagulation;
 - 3) Sublimation;
 - 4) Extraction;
 - 5) Peptization.

COLLIGATIVE PROPERTIES OF THE SOLUTION

- 1. Colligative properties of the solution largely depend on:
 - 1) solvent polarity;
 - 2) molecular weights of the dissolved substance;
 - 3) solution mass;
 - 4) molecular weights of the solvent;
 - 5) the number of particles of the dissolved substance.
- 2. The aqueous solution of which of the listed compounds (the same concentrations) will show the lowest freezing temperature?
 - 1) Sodium-chloride;
 - 2) Urea;
 - 3) Aluminum-sulfate;
 - 4) Potassium-sulfate;
 - 5) Lithium-nitrate.

- 3. At what temperature does the solution obtained by dissolving 0.06 g of urea in 200 g of water freeze? The cryoscopic constant (molal depression constant) for water is $K_k = 1,86$. Ar(C) = 12; Ar(N) = 14; Ar(H) = 1; Ar(O) = 16.
 - 1) -9,3°C; 2) 9,3°C; 3) 0,093°C; 4) 0,0093°C; 5) -0,0093°C.
- 4. How many grams (g) of urea should be dissolved in 250 mL of solution for the osmotic pressure of 0.15 atm at 25°C? Ar(C) = 12; Ar(O) = 16; Ar(H) = 1. (1 atm = 101 325 Pa)
 - 1) 6,13·10⁻³; 2) 1,38·10⁻³; 3) 82,81; 4) 0,00153; 5) 9,2·10⁻².
- 5. At what temperature does the solution containing 1,32 g of calcium-nitrite in 250 g of water boil? The ebullioscopic constant (molal elevation constant) is $K_e = 0.52$. Ar(Ca) = 40; Ar(N) = 14; Ar(O) = 16.
 - 1) 0,0624; 2) 99,9376; 3) 100,0624; 4) 0,04; 5) -0,0624.

ACIDS AND BASES. DISSOCIATION RATES. DISSOCIATION CONSTANT

- 1. Find the false statement.
 - 1) According to the protolytic theory, acids are proton-releasing substances;
 - 2) For hydrochloric acid, the conjugate base is the chloride anion;
 - 3) For the ammonium ion, the conjugate base is the hydrogen ion H⁺;
 - 4) According to the protolytic theory, it can be concluded that the bases are nucleophilic substances;

5) According to the protolytic theory, the term acid or base does not mean the appropriate class of inorganic compounds, but the properties of molecules in a given environment.

- 2. Ion NO_3^- represents the conjugate base for:
 - 1) HNO₂; 2) NO; 3) NH₃; 4) NH₂OH; 5) HNO₃.

3. In the above-mentioned reactions, there will react as a base::

 $NH4^{+} + H_2O \rightarrow CH_3COOH + H_2O \rightarrow$

- 1) In the first reaction NH_4^+ , and in the second CH_3COOH ;
- 2) In the first reaction NH_4^+ , and in the second H_2O ;
- 3) In the first reaction H_2O , and in the second CH_3COOH ;
- 4) In both H_2O ;
- 5) In the first H_2O , while in the other among the reactants there is no molecule that acts as a base.
- 4. Calculate the constant of the conjugate acid if $pK_b(NH_3) = 4,8$.
 - $\begin{array}{c} 1) \ 1,58\cdot 10^{-4};\\ 2) \ 1,58\cdot 10^{-5};\\ 3) \ 1,58\cdot 10^{5};\\ 4) \ 6,31\cdot 10^{-10};\\ 5) \ 6,31\cdot 10^{10}. \end{array}$
- 5. Calculate the degree of dissociation if it is known that in the system of a total of 500 molecules only 5 molecules have been dissociated (express in percent (%)).
 - 1) 0,01; 2) 1; 3) 5; 4) 50; 5) 49,5.
- 6. Find the conjugate bases for the listed molecules and ions: HCN, NH₄⁺, HSO₄⁻, H₂CO₃.

1) CN⁻, NH₄⁺, SO₄²⁻, HCO₃⁻; 2) CN⁻, NH₃, SO₄²⁻, HCO₃⁻; 3) CN⁻, NH₃, H₂SO₄, HCO₃⁻; 4) HCN, NH₃, SO₄²⁻, HCO₃⁻; 5) CN⁻, NH₃, SO₄²⁻, H₂CO₃.

pH and pOH VALUE

- 1. Calculate the pH value of the solution if the concentration of OH^{-1} ions is 10^{-8} mol/dm³.
 - 1) 8;
 - 2) 18;
 - 3) 2;
 - 4) 6;
 - 5) 10.

- 2. What are the concentrations of H_3O^+ and OH^- ions if the pOH value of the solution is 9.
 - 1) $[H_3O^+] = 9 \text{ mol/dm}^3 \mu [OH^-] = 5 \text{ mol/dm}^3;$ 2) $[H_3O^+] = 5 \text{ mol/dm}^3 \mu [OH^-] = 9 \text{ mol/dm}^3;$ 3) $[H_3O^+] = 10^{-5} \text{ mol/dm}^3 \mu [OH^-] = 10^{-9} \text{ mol/dm}^3;$ 4) $[H_3O^+] = 10^{-9} \text{ mol/dm}^3 \mu [OH^-] = 10^{-5} \text{ mol/dm}^3;$ 5) $[H_3O^+] = [OH^-] = 10^{-9} \text{ mol/dm}^3.$
- 3. How many milliliters (mL) of 0.05 mol/dm³ sodium-hydroxide solution are needed to neutralize 500 mL of perchloric acid solution with pH value 2?
 - 1) 10^{-2} ; 2) $5 \cdot 10^{-3}$; 3) $5 \cdot 10^{3}$; 4) $5 \cdot 10^{-2}$; 5) 10^{2} .
- 4. Which solution is the most acidic one?

1) pH = 2; 2) [H⁺] = 10⁻⁴ mol/dm³; 3) pH = 0; 4) pOH = 13; 5) [OH⁻] = 10⁻⁴ mol/dm³.

- 5. What is the concentration of hydrocyanic acid (mol/dm³) if the pH value of the solution is 5.05, and acid dissociation constant $4 \cdot 10^{-10}$.
 - 1) 8,9·10⁻⁶; 2) 1,12·10⁻⁹; 3) 0,2; 4) 4·10⁻¹⁰; 5) 2,5.
- 6. What is the pOH value of the solution containing 1.48 g of calcium-hydroxide in 400 mL of the solution. Ar(Ca) = 40; Ar(O) = 16; Ar(H) = 1.
 - 1) 13; 2) 1,30; 3) 12,70; 4) 1; 5) 1,70.
- 7. Calculate the pH value of the solution containing $1,5 \cdot 10^{20}$ OH⁻ ions in 250 mL of the solution.
 - 1) 3,61; 2) 3; 3) 5; 4) 11; 5) 10⁻³.

BUFFERS

1. Which mixture represents a buffer?

1) HNO₃ and NaNO₂;
 2) KOH and NH₄Cl;
 3) CH₃COOH and NaCl;
 4) HNO₂ and KNO₂;
 5) NH₃ and CaSO₄.

2. If ammonia (NH₃) molecules are found in the mixture with one of the above-mentioned compounds, then the resulting mixture will have buffering properties.

1) NaOH; 2) NH₃; 3) NH₄Cl; 4) Ca(OH)₂; 5) CO.

- 3. Which buffer is not biologically significant?
 - 1) Bicarbonate;
 - 2) Hemoglobin;
 - 3) Phosphate;
 - 4) Ammonia;
 - 5) Protein.
- 4. If a small amount of sodium-hydroxide is added to the aqueous solution consisting of ammonia and ammonium-chloride, then one of the listed component of the buffer system will react with the added OH⁻ ions:

base;
 ammonia;
 ammonium-hloride;
 sodium-hydroxide;
 components from the solution do not react.

- 5. How many milligrams (mg) of sodium-acetate should be added into 200 mL of the solution of acetic acid with a concentration of 0.02 mol/L so that the concentration of H⁺ ions of such solution is $9 \cdot 10^{-5}$ mol/L? The acid dissociation constant is $1,8 \cdot 10^{-5}$. Ar(C) = 12; Ar(H) = 1; Ar(O) = 16; Ar(Na) = 23.
 - 1) 328; 2) 656; 3) 0,432; 4) 6,56; 5) 65,6.

- 6. What is the pH of the solution formed when 107 mg of ammonium-chloride is added to 100 mL of 0.05 mol/L ammonia solution. $K_b = 1.8 \cdot 10^{-5}$; Ar(H) = 1; Ar(N) = 14; Ar(O) = 16.
 - 1) 4,35; 2) 7; 3) 9,65; 4) 4,75; 5) 10.
- 7. If we have 50 mL of ammonium-hydroxide solution with the concentration of 0.2 mol/L, how many milliliters (mL) of 0.1 mol/L hydrochloric acid need to be added to make a buffer solution?
 - 1) 100 mL; 2) 50 mL; 3) 101 mL; 4) 110 mL; 5) 190 mL.
- 8. What is the concentration of H⁺ ions in the solution in which the concentrations of ammonia and ammonium-chloride are equal and are 0,15 mol/dm³. The dissociation constant of ammonia is $1,8\cdot10^{-5}$.
 - 1) 1,8·10⁵ mol/dm³; 2) 5,56·10¹⁰ mol/dm³; 3) 1,8·10⁻⁵ mol/dm³; 4) 0,15 mol/dm³; 5) 5,56·10⁻¹⁰ mol/dm³.
- 9. Which compound in the mixture with sodium-formate is the buffer system?
 - 1) Sulfuric acid;
 - 2) Sodium-hydroxide;
 - 3) Methane acid;
 - 4) Perchloric acid;
 - 5) Potassium-hydroxide.

SALT. SALT HYDROLYSIS

- 1. Which compound does not hydrolyze?
 - 1) CaCl₂; 2) NH₄Cl; 3) KNO₂; 4) Al(ClO₄)₃; 5) KClO.

- 2. Which compound hydrolyzes alkally (produces solutions that are basic)?
 - 1) NaOH; 2) CaSO₄; 3) NaNO₂; 4) NH₂OH; 5) HCl.
- 3. The aqueous solution of one of the listed compounds has the pH value greater than 7.
 - 1) KNO₂; 2) MnSO₄; 3) H₂SO₃; 4) BeSO₄; 5) HClO₄.
- 4. In the reaction of sodium-hydroxide and one of the listed compounds, a new compound is formed which does not undergo the hydrolysis reaction.
 - 1) Nitric acid;
 - 2) Acetic acid;
 - 3) Sulfuric acid;
 - 4) Perchloric acid;
 - 5) Chloric acid.
- 5. The color of litmus paper is blue in the aqueous solution of one of the listed compounds.
 - 1) FeCl₃; 2) KCN; 3) NaNO₃; 4) NaCl; 5) HClO₂.
- 6. How many milligrams (mg) of the basic (alkali) salt are formed in the reaction of 0.148 g of calciumhydroxide with the appropriate amount of hydrochloric acid? Ar(Ca) = 40; Ar(O) = 16; Ar(H) = 1; Ar(Cl) = 35,5.
 - 1) 185; 2) 2; 3) 0,002; 4) 18,5; 5) 0,185.
- 7. Find the neutral salt listed below that hydrolyzes acidically.
 - 1) NaCl; 2) KNO₂; 3) KHCO₃; 4) Fe(ClO₄)₂; 5) FeOHSO₄.

- 8. If a chemical equation $NH_4^+ + H_2O \rightleftharpoons NH_3 + H_3O^+$ is read from the right to the left, then it represents a process that is the opposite of the hydrolysis process, and it is called:
 - 1) distillation;
 - 2) sublimation;
 - 3) extraction;
 - 4) peptization;
 - 5) neutralization.

ELECTROLYSIS.

- 1. The electrolysis of molten zinc-iodide at the cathode separates:
 - 1) Zn; 2) H₂; 3) H₂O; 4) I₂; 5) O₂.
- 2. The electrolysis of molten iron(III)-chloride at the anode separates:
 - 1) Fe;
 - 2) H₂;
 - 3) Cl₂;
 - 4) O₂;
 - 5) H₂O.
- 3. During the electrolysis of molten sodium-chloride, the following process will occur at the cathode:
 - reduction of sodium ions;
 oxidation of chlorine ions;
 reduction of chlorine ions;
 oxidation of oxygen;
 oxidation of sodium ions.
- 4. Which mass (g) of molten sodium-hydroxide undergoes the electrolysis if 0.69 g of sodium is isolated at the cathode during that process? Ar(Na) = 23; Ar(O) = 16; Ar(H) = 1.
 - 1) 0,69; 2) 69; 3) 40; 4) 1,2; 5) 12.
- 5. Find the equation that is not written correctly.

1) Fe + CuSO₄ \rightarrow FeSO₄ + Cu; 2) Zn + CuSO₄ \rightarrow ZnSO₄ + Cu; 3) Fe + CaSO₄ \rightarrow FeSO₄ + Ca; 4) 2Na + 2 H₃O⁺ \rightarrow 2Na⁺ + H₂ + 2H₂O; 5) Zn + H₂SO₄ \rightarrow ZnSO₄ + H₂.

6. Which metal can reduce H⁺-ion from the acid, ie. can release a molecule of hydrogen from the acid?

1) Cu; 2) Zn; 3) Ag; 4) Au; 5) Hg.

PERIODIC SYSTEM OF ELEMENTS

1. In which compound, the oxidation state of hydrogen is -1?

- 1) HBr; 2) NaOH; 3) LiH; 4) H₂O₂; 5) NH₃.
- 2. An oxygen atom from a water molecule is hybridized:
 - 1) sp; 2) d²sp³; 3) sp³d²; 4) sp³; 5) sp.
- 3. In the reaction of sodium with 200.36 g of water, 224 mL of hydrogen was released. Calculate the molality of the produced sodium-hydroxide solution. (Measurements were performed under normal conditions). Ar(Na) = 23; Ar(H) = 1; Ar(O) = 16.
 - 1) 0,01; 2) 0,02; 3) 0,1; 4) 1; 5) 0,2.
- 4. Find the false statement:

1) The general electronic configuration of the last energy level of alkali metal atoms is ns¹;

- 2) The first ionization energy of lithium is greater than the first ionization energy of rubidium;
- 3) Alkali metals are among the lightest metals;
- 4) For alkali metals, it is very difficult to release their electron building a positive M⁺ ion;
- 5) In chemical reactions, cesium is more reactive than sodium.

- 5. Which one of the listed compounds is superoxide?
 - 1) Na₂O₂; 2) Li₂O; 3) Na₂O; 4) CO₂; 5) KO₂.
- 6. Calculate the percentage of sodium in sodium bicarbonate. Ar(Na) = 23; Ar(H) = 1; Ar(C) = 12; Ar(O) = 16.
 - 1) 23; 2) 46; 3) 27,38; 4) 76,22;
 - 5) 80.
- 7. Perchloric acide anhydride is:
 - 1) Cl₂O; 2) Cl₂O₇; 3) HCl; 4) ClO₂; 5) NaCl.
- 8. The number of electrons, protons and neutrons in the $_2\text{He}^4$ atom is:
 - 1) $e^{-} = 2$; $p^{+} = 2$; $n^{0} = 2$; 2) $e^{-} = 2$; $p^{+} = 2$; $n^{0} = 4$; 3) $e^{-} = 4$; $p^{+} = 2$; $n^{0} = 2$; 4) $e^{-} = 2$; $p^{+} = 4$; $n^{0} = 2$; 5) $e^{-} = 4$; $p^{+} = 4$; $n^{0} = 2$.

ALKANES

- 1. Which compound contains a quaternary carbon atom?
 - 1) 2,4-dimethylpentane;
 - 2) n-pentane;
 - 3) neopentan;
 - 4) isobutane;
 - 5) n-heptane.
- 2. Which molecule has the highest boiling point?
 - 1) Propane;
 - 2) Isobutane;
 - 3) n-Hexane;
 - 4) Isopentane;
 - 5) Neopentan.

3. Find the neopentyl group.

- 4. In which compound, the rotation and formation of conformational isomers are possible?
 - 1) n-pentane; 2) isoprene; 3) o-xylene; 4) eten; 5) 1,3-cyclopentadiene.
- 5. How many milliliters (mL) of carbon(IV)-oxide are released during combustion of 112 mL of ethane (normal conditions)?
 - 1) 112; 2) 224; 3) 448; 4) 672; 5) 0,224.
- 6. How many tertiary carbon atoms does a 5-ethyl-2,3-dimethylheptane molecule contain?
 - 1)7; 2) 5; 3) 4;
 - 4) 0;
 - 5) 3.

ALKENE

1. Find the correct name of the alkyl group shown in the figure.

СН₂=СН-СН₂-

- 1) propyl group;
- 2) isopropyl group;
- 3) vinyl group;
- 4) allyl group;
- 5) pentyl group.

- 2. In the reaction of 2-butene with potassium-permanganate at room temperature, the main product is:
 - 2-butanol;
 butane;
 3-butanol;
 2,3-butanediol;
 - 5) 2,3-butylene oxide.
- 3. In which of the following compounds, the geometric cis/trans isomerism occurs?
 - 1) 2-methyl-2-butene;
 - 2) 1-chloro-2-methyl-butane;
 - 3) 1,2-butadiene;
 - 4) isobutane;
 - 5) 2-pentene.
- 4. Find the most stable alkene.

1)
$$H_3C$$
 CH_3 CH_2 CH_2 CH_3 H_3C CH_2 CH_2 CH_2 CH_3
2) H_3C CH_3 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2 CH_3

3)
$$CH_2 = CH - CH_2 - CH_3$$

5. Find the correct structure of the compound formed by the reaction of 3-methyl-1-pentene and hydrochloric acid without a catalyst.

- 6. Which compound is formed by the reaction of bromine and 2-butene at room temperature?
 - butyl-bromide;
 1,2-dibromo-butane;
 sec-butyl-bromide;
 tert-butyl-bromide;
 2,3-dibromobutane.
- 7. Which molecule does not contain a sp²-hybridized carbon atom?
 - 1) Isobutene;
 - 2) 2-methyl-2-butene;
 - 3) Vinyl chloride;
 - 4) Benzene;
 - 5) Cyclohexane.

ALKINES AND DIENES

- 1. Which compound has an acidic character?
 - 1) 1-butene;
 - 2) 2-butyne;
 - 3) 2-methylbutane;
 - 4) 4-methyl-2-pentine;
 - 5) 1-butyne
- 2. Find the cumulated diene.
 - 1) 1,3-pentadiene;
 - 2) isoprene;
 - 3) 1,4-pentadiene;
 - 4) 1,2-pentadiene;
 - 5) 1,3-cyclohexadiene.
- 3. Find the unknown compounds so that the stated chemical equation is written correctly.

$$CH_3 - C = CH \xrightarrow{H_2} A \xrightarrow{Cl_2} B \xrightarrow{2KOH} C$$

- 1) A = propane; B = 1,2-dichloropropane; C = 1-propyne;
- 2) A = propane; B = 1,1-dichloropropane; C = 1-propyne;
- 3) A = propene; B = 1,2-dichloropropane; C = 1-propyne;
- 4) A = propane; B = 1,2-dichloropropane; C = 1-propene;
- 5) A = propene; B = 1,2-dichloropropane; C = 1-propene.

4. Find the structure of the compound that is formed when isoprene reacts with bromine in the molar ratio of 1: 2.

5. Find the correct name of the shown compound.

- 2,3-dimethyl-4-heptin;
 5,6-dimethyl-3-heptene;
 2,3-dimethyl-4-heptene;
 5,6-dimethyl-3-heptin;
 neoheptin.
- 6. How many grams (g) of the reaction product are formed by the reaction of 3.4 g of isoprene and 0.1 mol of bromine? Ar(Br) = 80; Ar(C) = 12; Ar(H) = 1.
 - 1) 11,2; 2) 38,8; 3) 22,8; 4) 112; 5) 19,4.

CYCLOALKANES

1. Find the structure of *cis*-1,2-dichlorocyclobutane.

3. How many geometric isomers of 1,2-dimethylcyclobutane are there?

- 1) 12;
- 2) 3;
- 3) 2;
- 4) 24;
- 5) 8.

4. Find the compound formed in the reaction of cyclopentene and bromine.

1) 1,5-dibromopentane;
 2) 1,1-dibromocyclopentane;
 3) 1,2-dibromocyclopentane;
 4) cyclopentyl-bromide;
 5) 1,3-cyclopentadiene.

5. What is the product in the reaction of cyclohexane with hydrogen in the presence of nickel at 200 ° C?

- 1) No reaction occurs;
- 2) n-hexane;
- 3) 1-hexene;
- 4) 2-hexene;
- 5) 1-cyclohexene.

- 6. What is the angular deformation of the tetrahedral angle during the construction of cyclopropane?
 - 1) 109°28'; 2) 49°28'; 3) 19°28'; 4) 60°; 5) 90°.

AROMATIC HYDROCARBONS

- 1. Find the false statement.
 - 1) Benzene does not react with potassium-permanganate;
 - 2) The bond length between two C-atoms in benzene is between a single and a double bond;
 - 3) Arenes do not dissolve in water;
 - 4) Arenes are mainly toxic compounds;
 - 5) Benzene and benzene derivatives are subject to free radical substitution reactions.
- 2. Find the structure of the compound corresponding to the name *o*-ethylbenzoic acid.

- 3. Find the electrophilic reagent.
 - 1) H₂O; 2) OH⁻; 3) Br⁻; 4) NO₂⁺; 5) CN⁻.
- 4. Oxidation of isopropylbenzene with a strong oxidizing agent at high temperature gives one of the following compounds:
 - 1) phthalic acid;
 - 2) cyclohexene;
 - 3) cyclohexanone;
 - 4) acetic acid;
 - 5) benzoic acid.

5. Which group is in the ortho-position relative to the methyl-group in the context of the present molecule?

- 6. Find the electrophile that participates in the benzene nitration reaction.
 - 1) HSO₄-; 2) NO₂+; 3) SO₃; 4) H₂O;
 - 5) Br⁺.

ALKYL HALOGENIDS

1. Which compound is formed in the reaction of 2-chloropropane with metallic sodium?

1) 2) CH_3 3) 4) 5) $CH_3CH_2CH_3$ $CH_3CHCHCH_3$ $CH_3CH_2CH_2CH_2CH_2CH_3$ $CH_3CH=CH_2$ CH_3

- 2. In which compound, it is not possible to substitute the present halogen?
 - allyl-chloride;
 cyclohexyl-chloride;
 benzyl-chloride;
 chlorobenzene;
 ethyl-chloride.

3. Calculate the percentage of bromine in *o*-dibromobenzene. Ar(C) = 12; Ar(H) = 1; Ar(Br) = 80.

1) 1,6; 2) 32,20; 3) 67,80; 4) 30; 5) 50.

- 4. Find the compound formed in the addition reaction between vinyl-chloride and chlorine.
 - ethyl-chloride;
 1,2-dichloroethene;
 1,1,2-trichloroethane;
 ethin;
 1,1,2,2-tetrachloroethane.
- 5. Which compound should be treated with phosphorus(III)-chloride to obtain isobutyl-chloride?
 - 1) 1-butanol;
 2) *sec*-butanol;
 3) *tert*-butanol;
 4) 2-butanone;
 5) 2-methyl-1-propanol.
- 6. Which compound is formed in the reaction of propyl-chloride and water?
 - 1) Propene;
 - 2) Propanol;
 - 3) Propyne;
 - 4) 1,2-propanediol;
 - 5) Glycerol.

ALCOHOLS

- 1. How many different alcohols of molecular formula $C_4H_{10}O$ are there?
 - 1)4;
 - 2) 10;
 - 3) 5;
 - 4) 14;
 - 5) 1.
- 2. Which compound is formed as the final product in the reaction of methyl-magnesium-bromide with propanal, and some mineral acid?
 - 1) 2-butanol;
 - 2) Methanol;
 - 3) Propanol;
 - 4) Propanoic acid;
 - 5) Butanone.

- 3. Which pair of compounds can be used to obtain 3-methyl-2-butanol?
 - 1) Ethyl-magnesium-chloride and propanone;
 - 2) Methyl-magnesium-bromide and propanal;
 - 3) Isobutyl-magnesium-iodide and formaldehyde;
 - 4) Isopropyl-magnesium-chloride and ethanal;
 - 5) Isopropyl-magnesium-chloride and propanal.
- 4. Find the unknown compounds so that the following chemical equation is correctly written:

$$CH_{3} \xrightarrow{CH_{3}} CH_{2} \xrightarrow{H_{2}SO_{4}} A \xrightarrow{H_{2}O} B$$

- 1) A = *tert*-butyl-hydrogensulfate; B = isobutanol;
- 2) A = *tert*-butyl-hydrogensulfate; B = *tert*-butanol;
- 3) A = *tert*-butyl-sulfate; B = *tert*-butanol;
- 4) A = isobutyl-hydrogensulfate; B = isobutanol;
- 5) A = sec-butyl-hydrogensulfate; B = sec-butanol.
- 5. Which compound is not ether?

1) o-cresol;

- 2) 1,4-dioxane;
- 3) Tetrahydrofuran;
- 4) Methoxy-benzene;
- 5) Vinyl-ethyl-ether.
- 6. Which alcohol cannot be obtained by the reduction of aldehydes and ketones?
 - 1) *sec*-butanol;
 - 2) 2-methyl-1-butanol;
 - 3) 2-methyl-2-butanol;
 - 4) Neopentanol;
 - 5) Isopropanol.
- 7. Which compound is formed in the reaction of 2-methyl-1-propanol with potassium-dichromate?
 - 1) Isobutene;
 - 2) Butanone;
 - 3) Propanal;
 - 4) 2-methyl-propanal;
 - 5) Acetone.

ALDEHYDES AND KETONES

1. Find the correct name of the compound shown in the figure.

- 5) acrolein.
- 2. Find the structure of the compound corresponding to the name 2-methyl-2-propenal.

3. Which compound is formed in the reaction of ethanol and ethanol in the molar ratio of 1: 1 in an acidic medium?

1)Ethyl methyl ether;
 2) Diethyl ketone;
 3) 1-ethoxy-1-ethanol;
 4) 1-butanol;
 5) 1,1-butanediol.

- 4. Which compound can be formed when o-hydroxy-benzaldehyde is oxidized only at the aldehyde group?
 - 1) Benzoic acid;
 - 2) Salicylic acid;
 - 3) Phthalic acid;
 - 4) Quinone;
 - 5) Cyclohexanone.
- 5. Which compound is formed by the reaction of butanal with hydrogen in the presence of nickel as a catalyst?
 - 1) Buten;
 - 2) Bhutan;
 - 3) Butanoic acid;
 - 4) 1-butanol;
 - 5) Butanone.

CARBOXYLIC ACIDS

1. Find the structure of the compound that corresponds to the name 2-methyl-2-butenoic acid.

- 2. Which compound is obtained by heating calcium-acetate at high temperatures?
 - 1) Methane;
 - 2) Ethane;
 - 3) Propanal;
 - 4) Ethanoic acid;
 - 5) Acetone.
- 3. Determine the molecular formula of a carboxylic acid containing 48.6% carbon, 8.1% hydrogen and 43.2% oxygen. Ar(C) = 12; Ar(O) = 16; Ar(H) = 1.
 - 1) $C_2H_4O_2$; 2) $C_4H_6O_2$; 3) $C_3H_6O_2$; 4) $C_3H_4O_2$; 5) $C_6H_{12}O_2$.
- 4. Why is a chloroacetic acid stronger acid than an acetic acid?
 - 1) Because the hydrocarbon chain is longer in a hydrochloric acid;
 - 2) Because the chlorine atom has a negative inductive effect;
 - 3) Because the chlorine atom has a low ionization energy;

4) Because the chlorine atom has the property of easily transferring its electrons to the neighboring atoms;

- 5) The chlorine atom has no effect on the strength of the observed acids.
- 5. Find the compound with the most acidic character.
 - 1) Methane acid;
 - 2) Ethanoic acid;
 - 3) Trichloroacetic acid;
 - 4) Monochloroacetic acid;
 - 5) Propanoic acid.

- 6. Which compound can form a propanoic acid by oxidation?
 - 1) Propane;
 - 2) Propyl-benzene;
 - 3) Butanal;
 - 4) Butanol;
 - 5) Propanol.

FUNCTIONAL DERIVATIVES OF CARBOXYLIC ACIDS

- 1. The reaction of the functional derivatives of carboxylic acids with ammonia is:
 - 1) Decarboxylation;
 - 2) Reduction;
 - 3) Hydrolysis;
 - 4) Alcoholism;
 - 5) Amonolysis.
- 2. Which compound is formed in the reaction of a butanoic acid and phosphorus(III)-chloride?
 - 1) Butyl chloride;
 - 2) Butanoyl chloride;
 - 3) Butanal;
 - 4) 2-butanone;
 - 5) 2-chloro-butanoic acid.
- 3. Which compound is formed in the reaction of sodium-propanoate and propanoyl-chloride?

4. Which compound is an amide?

- 5. Which compound is formed in the reaction of butanoyl-chloride and ammonia?
 - 1) Bhutan;
 - 2) Buten;
 - 3) Butanol;
 - 4) Butanamide;
 - 5) Butyl amine.

ORGANIC COMPOUNDS WITH SULFUR

1. Find the sulfoxide.

- 2. Which compound is formed in the reaction of propene with hydrogen-sulfide in the presence of light? 1) 1-propene-3-thiol;
 - 2) Propanthiol;
 - 3) 1-propene-1-thiol;
 - 4) 2-propanethiol;
 - 5) Dipropyl thioether.

3. Find the name of the compound shown in the figure.

 $CH_2 = CH - CH_2 - S - CH_2 - CH = CH_2$

- Diallyl-thioether;
 1-propene-3-thiol;
 Diallyl-disulfide;
 Diallyl-sulfoxide;
 Diallyl-sulfoxe.
- 4. What type of the compound is formed in the reaction of hydrogen-peroxide and sulfides (thioethers) at room temperature?
 - 1) Sulfons;
 - 2) Sulfoxides;
 - 3) Mercaptans;
 - 4) Disulfides;
 - 5) Sulfonic acids.
- 5. Find the correct name of the molecule shown in the figure.
 - 1) propanol;
 - 2) 1-mercapto-3-propanol;
 - 3) 1,3-dimercapto-2-propanol;
 - 4) 1,2-dimercaptopropane;
 - 5) 2,3-dimercapto-1-propanol.

CH_2	-CH-	$-CH_2$
SH	SH	OH

AMINES AND NITRO-COMPOUNDS

1. Find the unknown compounds so that shown chemical transformations are correct.

1) $A = HNO_2/H_2SO_4$; B = Fe/HCl; 2) $A = HNO_3/H_2SO_4$; B = Fe/HCl; 3) $A = HNO_3/H_2SO_4$; $B = NH_3$; 4) $A = HNO_2$; B = Fe/HCl; 5) $A = HNO_3/H_2SO_4$; $B = NH_4OH$. 2. Which compound is a secondary amine?

3. Find the name that corresponds to the compound shown in the figure.

- Aniline;
 Phenylmethylamine;
 N-methyl-aniline;
 Benzylamine;
 Cyclohexylamine.
- 4. Which compound is formed in the reaction of ethyl methyl-amine with a nitric acid?

- 5. In which case does the quaternary ammonium ion occur?
 - 1) Trimethyl-amine;
 - 2) N-methyl-aniline;
 - 3) Benzyl-amine;
 - 4) Acetylcholine;
 - 5) Sulfanilamide

- 6. Find the primary aromatic amine.
 - 1) Benzyl-amine;
 - 2) N, N-dimethyl-aniline;
 - 3) Trimethyl-amine;
 - 4) Cyclohexyl-amine;
 - 5) Aniline.

HETEROCYCLIC COMPOUNDS

- 1. Which compound is part of the porphyrin ring?
 - 1) Pyridine;
 - 2) Quinoline;
 - 3) Imidazole;
 - 4) Pyrimidine;
 - 5) Pyrrole.
- 2. Which metal ion is part of vitamin B12?
 - 1) Fe²⁺;
 - 2) Mg²⁺;
 - 3) Fe^{3+} ;
 - 4) Co²⁺;
 - 5) Na⁺.
- 3. Which compound is formed by decarboxylation of histidine?
 - 1) 1,3-imidazole;
 - 2) Ethyl-amine;
 - 3) Pyrrole;
 - 4) Pyrrolidine;
 - 5) Histamine.

4. Cytosine, thymine and uracil are derivatives of one heterocyclic compound:

- 1) 1,3-thiazole;
- 2) purine;
- 3) 1,3-diazine;
- 4) imidazole;
- 5) pyridine.

5. Which of the following bases is only part of the RNA molecules?

- 1) Adenine;
- 2) Cytosine;
- 3) Guanine;
- 4) Uracil;
- 5) Thyme.

6. Find the structure of 1,3-oxazole.

CARBOHYDRATES

- 1. Which monosaccharide molecule is part of the ribonucleic acid?
 - 1) Ribose;
 - 2) Glucose;
 - 3) 2-deoxy-ribose;
 - 4) Chalcosis;
 - 5) Fructose.
- 2. Which sugar component is part of the DNA molecules?
 - 1) Ribose;
 - 2) Glucose;
 - 3) Mannose;
 - 4) Fructose;
 - 5) 2-deoxy-D-ribose.
- 3. Find a molecule that represents 4-epimer-D-glucose.
 - 1) D-mannose;
 - 2) D-fructose;
 - 3) L-glucose;
 - 4) D-galactose;
 - 5) L-mannose.
- 4. Find the structure of β -D-glucopyranose.

5. Find the structure of α -D-fructofuranose.

- 6. Which molecule of disaccharides, in addition to glucose molecules, also contains molecules of fructose?
 - 1) Amylopectin;
 - 2) Amylose;
 - 3) Lactose;
 - 4) Maltose;
 - 5) Sucrose.

LIPIDS

- 1. Find the essential fatty acid.
 - 1) Palmitic;
 - 2) Arachidonic;
 - 3) Palmitoleic;
 - 4) Stearin;
 - 5) Oleic.
- 2. Which lipids fall into the category of unsaponifiable lipids?
 - 1) Neutral fats;
 - 2) Phosphoglycerides;
 - 3) Sphingolipids;
 - 4) Waxes;
 - 5) Steroids.
- 3. Which compound needs to be exposed to the sunlight to form Vitamin D3?
 - 1) Ergosterol;
 - 2) Vitamin D2;
 - 3) 7-dehydrocholesterol;
 - 4) Lanosterol;
 - 5) Cholesterol.

4. Rickets (Rachitis) occurs in children due to the lack of ______.

- 1) vitamin C;
- 2) vitamin A;

- 3) vitamin E;4) vitamin D;5) vitamin K.
- 5. How many moles of hydrogen are needed for complete hydrogenization of 2.8 g of linoleic acid? Ar(C) = 12; Ar(H) = 1; Ar(O) = 16.
 - 1) 0,01; 2) 0,02; 3) 2; 4) 1; 5) 0,03.

AMINO ACIDS AND PROTEINS

1. Find an amino acid that does not contain a chiral (asymmetric) carbon atom.

- 2. Find an amino acid that contains the thioether group in the side chain.
 - 1) Methyllysine;
 - 2) Lysine;
 - 3) Isoleucine;
 - 4) Methionine;
 - 5) Cysteine.

- 3. Which amino acid contains the carboxyl group in the side chain?
 - 1) Gln;
 - 2) Asn;
 - 3) Asp;
 - 4) Ser;
 - 5) Met.

4. Find the correct name for the compound shown in the figure.

- 5. When, in the case of amino acids, the carboxyl group is deprotonated and the amino group is protonated, then the amino acid is in the form of:
 - 1) zwitter-ion;
 - 2) anion;
 - 3) cation;
 - 4) free radical;
 - 5) such a form of amino acid is not possible.
- 6. Which amino acid does not fall into the category of essential for the human body?
 - 1) Valine;
 - 2) Leucine;
 - 3) Alanine;
 - 4) Histidine;
 - 5) Phenylalanine.
- 7. Which molecule containes the iron ion?
 - 1) Chlorophyll;
 - 2) Cystine;
 - 3) Hemoglobin;
 - 4) Tyrosine oxidase;
 - 5) Aniline.

1. Find the structure of cytosine.

-0

2. Find the correct name for the compound shown in the figure.

- 1) Deoxycytidine;
- 2) Deoxycytosine;
- 3) Cytidine monophosphate;
- 4) Deoxycytidine monophosphate;
- 5) Cytidine.

- 3. Find the correct name for the compound shown in the figure.
 - 1) Deoxycytidine;
 - 2) Deoxycytosine;
 - 3) Cytidine monophosphate;
 - 4) Deoxycytidine monophosphate;
 - 5) Cytidine.

 NH_2

- 4. Which base is complementary to the purine base adenine in the DNA molecule?
 - 1) Guanine;
 - 2) Cytosine;
 - 3) Thyme;
 - 4) Uracil;
 - 5) Guanosine.
- 5. Which nitrogen base is incorporated against guanine during the DNA replication?
 - 1) Cytosine;
 - 2) Thyme;
 - 3) Adenine;
 - 4) Uracil;
 - 5) Purine.
- 6. Find the molecule of nucleotide.
 - 1) Pyrimidine;
 - 2) Adenyl acid;
 - 3) Deoxycytidine;
 - 4) Guanosine;
 - 5) Uridine.
- 7. Find the molecule of nucleoside.
 - 1) Deoxyadenosine monophosphate;
 - 2) Adenine;
 - 3) Cytidine monophosphate;
 - 4) Guanine;
 - 5) Uridine.
- 8. What is the chemical structure of adenosine monophosphate (AMP)?
 - 1) Pyrimidine base;
 - 2) Nucleotide;
 - 3) Nucleoside;
 - 4) Carboxylic acid;
 - 5) Diene.